Calcium imaging in canary (serinus canaria) HVC reveals latent states supporting behavioral sequencing with long range history dependence

2018 ◽  
Author(s):  
Yarden Cohen ◽  
Jun Shen ◽  
Dawit Semu ◽  
Timothy M. Otchy ◽  
Timothy J. Gardner
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Marco Bocchio ◽  
Claire Gouny ◽  
David Angulo-Garcia ◽  
Tom Toulat ◽  
Thomas Tressard ◽  
...  

Abstract The temporal embryonic origins of cortical GABA neurons are critical for their specialization. In the neonatal hippocampus, GABA cells born the earliest (ebGABAs) operate as ‘hubs’ by orchestrating population synchrony. However, their adult fate remains largely unknown. To fill this gap, we have examined CA1 ebGABAs using a combination of electrophysiology, neurochemical analysis, optogenetic connectivity mapping as well as ex vivo and in vivo calcium imaging. We show that CA1 ebGABAs not only operate as hubs during development, but also maintain distinct morpho-physiological and connectivity profiles, including a bias for long-range targets and local excitatory inputs. In vivo, ebGABAs are activated during locomotion, correlate with CA1 cell assemblies and display high functional connectivity. Hence, ebGABAs are specified from birth to ensure unique functions throughout their lifetime. In the adult brain, this may take the form of a long-range hub role through the coordination of cell assemblies across distant regions.


1997 ◽  
Vol 56 (18) ◽  
pp. 11553-11565 ◽  
Author(s):  
P. Chandra ◽  
M. V. Feigelman ◽  
L. B. Ioffe ◽  
D. M. Kagan

2019 ◽  
Author(s):  
Marco Bocchio ◽  
Claire Gouny ◽  
David Angulo-Garcia ◽  
Tom Toulat ◽  
Thomas Tressard ◽  
...  

AbstractThe temporal embryonic origins of cortical GABA neurons are critical for their specialization. In the neonatal hippocampus, GABA cells born the earliest (ebGABAs) operate as ‘hubs’ by orchestrating neuronal dynamics. However, their fate remains largely unknown. To fill this gap, we have examined CA1 ebGABAs using a combination of electrophysiology, neurochemical analysis, optogenetic connectivity mapping as well as ex vivo and in vivo calcium imaging. We show that CA1 ebGABAs not only operate as hubs during development, but also maintain distinct morpho-physiological and connectivity profiles, including a bias for long-range targets and local excitatory inputs. In vivo, ebGABAs signal a variety of network states, including the activation of local CA1 assemblies. Hence, ebGABAs are specified from birth to ensure unique functions throughout their lifetime. In the adult brain, this may take the form of a long-range hub role through the coordination of cell assemblies across distant regions.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Jerry L Chen ◽  
Fabian F Voigt ◽  
Mitra Javadzadeh ◽  
Roland Krueppel ◽  
Fritjof Helmchen

The coordination of activity across neocortical areas is essential for mammalian brain function. Understanding this process requires simultaneous functional measurements across the cortex. In order to dissociate direct cortico-cortical interactions from other sources of neuronal correlations, it is furthermore desirable to target cross-areal recordings to neuronal subpopulations that anatomically project between areas. Here, we combined anatomical tracers with a novel multi-area two-photon microscope to perform simultaneous calcium imaging across mouse primary (S1) and secondary (S2) somatosensory whisker cortex during texture discrimination behavior, specifically identifying feedforward and feedback neurons. We find that coordination of S1-S2 activity increases during motor behaviors such as goal-directed whisking and licking. This effect was not specific to identified feedforward and feedback neurons. However, these mutually projecting neurons especially participated in inter-areal coordination when motor behavior was paired with whisker-texture touches, suggesting that direct S1-S2 interactions are sensory-dependent. Our results demonstrate specific functional coordination of anatomically-identified projection neurons across sensory cortices.


Sign in / Sign up

Export Citation Format

Share Document