scholarly journals Long-range population dynamics of anatomically defined neocortical networks

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Jerry L Chen ◽  
Fabian F Voigt ◽  
Mitra Javadzadeh ◽  
Roland Krueppel ◽  
Fritjof Helmchen

The coordination of activity across neocortical areas is essential for mammalian brain function. Understanding this process requires simultaneous functional measurements across the cortex. In order to dissociate direct cortico-cortical interactions from other sources of neuronal correlations, it is furthermore desirable to target cross-areal recordings to neuronal subpopulations that anatomically project between areas. Here, we combined anatomical tracers with a novel multi-area two-photon microscope to perform simultaneous calcium imaging across mouse primary (S1) and secondary (S2) somatosensory whisker cortex during texture discrimination behavior, specifically identifying feedforward and feedback neurons. We find that coordination of S1-S2 activity increases during motor behaviors such as goal-directed whisking and licking. This effect was not specific to identified feedforward and feedback neurons. However, these mutually projecting neurons especially participated in inter-areal coordination when motor behavior was paired with whisker-texture touches, suggesting that direct S1-S2 interactions are sensory-dependent. Our results demonstrate specific functional coordination of anatomically-identified projection neurons across sensory cortices.

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Michael N Economo ◽  
Nathan G Clack ◽  
Luke D Lavis ◽  
Charles R Gerfen ◽  
Karel Svoboda ◽  
...  

The structure of axonal arbors controls how signals from individual neurons are routed within the mammalian brain. However, the arbors of very few long-range projection neurons have been reconstructed in their entirety, as axons with diameters as small as 100 nm arborize in target regions dispersed over many millimeters of tissue. We introduce a platform for high-resolution, three-dimensional fluorescence imaging of complete tissue volumes that enables the visualization and reconstruction of long-range axonal arbors. This platform relies on a high-speed two-photon microscope integrated with a tissue vibratome and a suite of computational tools for large-scale image data. We demonstrate the power of this approach by reconstructing the axonal arbors of multiple neurons in the motor cortex across a single mouse brain.


2017 ◽  
Author(s):  
Siegfried Weisenburger ◽  
Robert Prevedel ◽  
Alipasha Vaziri

AbstractConsiderable efforts are currently being devoted to enhance the speed, spatial resolution and the size of the 3D sample volumes in which calcium imaging methods can capture neuronal network activity in different model systems. In the mammalian brain, tissue scattering severely limits the use of parallel acquisition techniques such as wide-field imaging and, as a consequence, methods based on two-photon point-scanning (2PM) have become the method of choice. However, 2PM faces severe restrictions due to technical limitations such as scan speed, laser power, and those related to the fluorescent probes, calling for conceptually new approaches to enhance the performance of two-photon calcium imaging schemes. Here we provide a detailed quantitative evaluation and comparison of different excitation/detection modalities from the perspective of detecting neuronal activity that are based on different point-spread functions (PSF), laser repetition rates and sampling strategies. We demonstrate the conditions for which imaging speed and signal-to-noise ratio are optimized for a given average power. Our results are based on numerical simulations which are informed by experimentally measured parameters and show that volumetric field of view and acquisition speed can be considerably improved compared to traditional 2PM schemes by a holistic optimization approach.


Neuron ◽  
2019 ◽  
Vol 104 (2) ◽  
pp. 385-401.e3 ◽  
Author(s):  
Si-Qiang Ren ◽  
Zhizhong Li ◽  
Susan Lin ◽  
Matteo Bergami ◽  
Song-Hai Shi

2021 ◽  
Author(s):  
Zongyue Cheng ◽  
Chenmao Wang ◽  
Bowen Wei ◽  
Wenbiao Gan ◽  
Qifa Zhou ◽  
...  

Neural modulation plays a major role in delineating the circuit mechanisms and serves as the cornerstone of neural interface technologies. Among the various modulation mechanisms, ultrasound enables noninvasive label-free deep access to mammalian brain tissue. To date, most if not all ultrasonic neural modulation implementations are based on ~1 MHz carrier frequency. The long acoustic wavelength results in a spatially coarse modulation zone, often spanning over multiple function regions. The modulation of one brain region is inevitably linked with the modulation of its neighboring regions. To significantly increase the spatial resolution, we explored the application of high-frequency ultrasound. To investigate the neuronal response at cellular resolutions, we developed a dual-modality system combining in vivo two-photon calcium imaging and focused ultrasound modulation. The studies show that the ~30 MHz ultrasound can suppress the neuronal activity in awake mice at 100-micron scale spatial resolutions, paving the way for high-resolution ultrasonic neural modulation.


2019 ◽  
Vol 2 (1) ◽  
pp. e201900325 ◽  
Author(s):  
Eloise Hudry ◽  
Jacob Klickstein ◽  
Claudia Cannavo ◽  
Rosemary Jackson ◽  
Alona Muzikansky ◽  
...  

Apolipoprotein E (APOE) effects on brain function remain controversial. Removal of APOE not only impairs cognitive functions but also reduces neuritic amyloid plaques in mouse models of Alzheimer’s disease (AD). Can APOE simultaneously protect and impair neural circuits? Here, we dissociated the role of APOE in AD versus aging to determine its effects on neuronal function and synaptic integrity. Using two-photon calcium imaging in awake mice to record visually evoked responses, we found that genetic removal of APOE improved neuronal responses in adult APP/PSEN1 mice (8–10 mo). These animals also exhibited fewer neuritic plaques with less surrounding synapse loss, fewer neuritic dystrophies, and reactive glia. Surprisingly, the lack of APOE in aged mice (18–20 mo), even in the absence of amyloid, disrupted visually evoked responses. These results suggest a dissociation in APOE’s role in AD versus aging: APOE may be neurotoxic during early stages of amyloid deposition, although being neuroprotective in latter stages of aging.


2014 ◽  
Vol 17 (12) ◽  
pp. 1825-1829 ◽  
Author(s):  
Jérôme Lecoq ◽  
Joan Savall ◽  
Dejan Vučinić ◽  
Benjamin F Grewe ◽  
Hyun Kim ◽  
...  

2019 ◽  
Vol 116 (22) ◽  
pp. 11038-11047 ◽  
Author(s):  
Meng-jun Sheng ◽  
Di Lu ◽  
Zhi-ming Shen ◽  
Mu-ming Poo

The dorsolateral striatum (DLS) is essential for motor and procedure learning, but the role of DLS spiny projection neurons (SPNs) of direct and indirect pathways, as marked, respectively, by D1 and D2 receptor (D1R and D2R) expression, remains to be clarified. Long-term two-photon calcium imaging of the same neuronal population during mouse learning of a cued lever-pushing task revealed a gradual emergence of distinct D1R and D2R neuronal ensembles that reproducibly fired in a sequential manner, with more D1R and D2R neurons fired during the lever-pushing period and intertrial intervals (ITIs), respectively. This sequential firing pattern was specifically associated with the learned motor behavior, because it changed markedly when the trained mice performed other cued motor tasks. Selective chemogenetic silencing of D1R and D2R neurons impaired the initiation of learned motor action and suppression of erroneous lever pushing during ITIs, respectively. Thus, motor learning involves reorganization of DLS neuronal activity, forming stable D1R and D2R neuronal ensembles that fired sequentially to regulate different aspects of the learned behavior.


2018 ◽  
Author(s):  
Yarden Cohen ◽  
Jun Shen ◽  
Dawit Semu ◽  
Timothy M. Otchy ◽  
Timothy J. Gardner

BIOspektrum ◽  
2019 ◽  
Vol 25 (7) ◽  
pp. 711-714
Author(s):  
Nina Dedic ◽  
Jan M. Deussing

AbstractThe corticotropin-releasing hormone (CRH) system orchestrates the organism’s stress response including the regulation of adaptive be haviours. Here we describe a novel neuronal circuit, which acts anxiety suppressing and positively modulates dopamine release. This anxiolytic circuit comprises inhibitory CRH-expressing, long-range projection neurons within the extended amygdala. These neurons innervate the ventral tegmental area, a prominent brain reward center that expresses high levels of CRH receptor type 1.


Sign in / Sign up

Export Citation Format

Share Document