scholarly journals Analisa Pola Sesar Di Daratan Selatan Sumatera Berdasarkan Event Gempa Tahun 1960-2000

2017 ◽  
Vol 3 (2) ◽  
Author(s):  
A. M Miftahul Huda ◽  
Badrul Munir

Analisa pola sesar telah dilakukan untuk wilayah sumatera bagian selatan melalui analisis data kegempaan. Data kegempaan yang digunakan adalah data ISC dan dikombinasikan dengan data fokal dari Global CMT dari tahun 1960-2000. Penelitian ini dilakukan dalam tiga tahap, yaitu penentuan persebaran kegempaan, penentuan moment tensor melalui data fokal, dan korelasi data dengan data geologi. Pada posisi geografis 1040-1060 BT terdapat 7 gempa signifikan sepanjang tahun 1960 sampai tahun 2000, diantaranya 3 sesar mendatar (strike slip fault), 1 sesar naik (reverse fault), 1 sesar turun (normal fault) dan 2 sesar oblique. Anomali data terjadi pada seismisitas kegempaan tahun 1960-2000, yaitu teramatinya sesar oblique. Aktifitas kegempaan dipengaruhi oleh aktifitas sesar Sumatera dari Andaman sampai Semangko. Kata kunci: pola sesar, gempa tektonik, fokal, oblique

2012 ◽  
Vol 52 (1) ◽  
pp. 415 ◽  
Author(s):  
Rosalind King ◽  
Simon Holford ◽  
Richard Hillis ◽  
Adrian Tuitt ◽  
Ernest Swierczek ◽  
...  

Previous in-situ stress studies across many of Australia’s petroleum basins demonstrate normal fault and strike-slip fault stress regimes, despite the sedimentary successions demonstrating evidence for widespread Miocene-to-Recent reverse faulting. Seismic and outcrop data demonstrate late Miocene-to-Recent reverse or reverse-oblique faulting in the Otway and Gippsland basins. In the Otway Basin, a series of approximately northeast to southwest trending anticlines related to reverse-reactivation of deep syn-rift normal faults, resulting in the deformation of Cenozoic post-rift sediments are observed. Numerous examples of late Miocene-to-Recent reverse faulting in the offshore Gippsland Basin have also been observed, with contractional reactivation of previously normal faults during these times partially responsible for the formation of anticlinal hydrocarbon traps that host the Barracouta, Seahorse and Flying Fish hydrocarbon fields, adjacent to the Rosedale Fault System. A new method for interpreting leak-off test data demonstrates that the in-situ stress data from parts of the Otway and Gippsland basins can be reinterpreted to yield reverse fault stress regimes, consistent with the present-day tectonic setting of the basins. This reinterpretation has significant implications for petroleum exploration and development in the basins. In the Otway and Gippsland basins, wells drilled parallel to the orientation of the maximum horizontal stress (σH) represent the safest drilling directions for both borehole stability and fluid losses. Faults and fractures, striking northeast to southwest, previously believed to be at low risk of reactivation in a normal fault or strike-slip fault stress regime are now considered to be at high risk in the reinterpreted reverse fault stress regime.


1983 ◽  
Vol 73 (2) ◽  
pp. 419-434
Author(s):  
Jeffery S. Barker ◽  
Charles A. Langston

abstract Teleseismic P-wave first motions for the M ≧ 6 earthquakes near Mammoth Lakes, California, are inconsistent with the vertical strike-slip mechanisms determined from local and regional P-wave first motions. Combining these data sets allows three possible mechanisms: a north-striking, east-dipping strike-slip fault; a NE-striking oblique fault; and a NNW-striking normal fault. Inversion of long-period teleseismic P and SH waves for the events of 25 May 1980 (1633 UTC) and 27 May 1980 (1450 UTC) yields moment tensors with large non-double-couple components. The moment tensor for the first event may be decomposed into a major double couple with strike = 18°, dip = 61°, and rake = −15°, and a minor double couple with strike = 303°, dip = 43°, and rake = 224°. A similar decomposition for the last event yields strike = 25°, dip = 65°, rake = −6°, and strike = 312°, dip = 37°, and rake = 232°. Although the inversions were performed on only a few teleseismic body waves, the radiation patterns of the moment tensors are consistent with most of the P-wave first motion polarities at local, regional, and teleseismic distances. The stress axes inferred from the moment tensors are consistent with N65°E extension determined by geodetic measurements by Savage et al. (1981). Seismic moments computed from the moment tensors are 1.87 × 1025 dyne-cm for the 25 May 1980 (1633 UTC) event and 1.03 × 1025 dyne-cm for the 27 May 1980 (1450 UTC) event. The non-double-couple aspect of the moment tensors and the inability to obtain a convergent solution for the 25 May 1980 (1944 UTC) event may indicate that the assumptions of a point source and plane-layered structure implicit in the moment tensor inversion are not entirely valid for the Mammoth Lakes earthquakes.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Bu Seog Ju ◽  
WooYoung Jung ◽  
Myung-Hyun Noh

A lifeline system, serving as an energy-supply system, is an essential component of urban infrastructure. In a hospital, for example, the piping system supplies elements essential for hospital operations, such as water and fire-suppression foam. Such nonstructural components, especially piping systems and their subcomponents, must remain operational and functional during earthquake-induced fires. But the behavior of piping systems as subjected to seismic ground motions is very complex, owing particularly to the nonlinearity affected by the existence of many connections such as T-joints and elbows. The present study carried out a probabilistic risk assessment on a hospital fire-protection piping system’s acceleration-sensitive 2-inch T-joint sprinkler components under seismic ground motions. Specifically, the system’s seismic capacity, using an experimental-test-based nonlinear finite element (FE) model, was evaluated for the probability of failure under different earthquake-fault mechanisms including normal fault, reverse fault, strike-slip fault, and near-source ground motions. It was observed that the probabilistic failure of the T-joint of the fire-protection piping system varied significantly according to the fault mechanisms. The normal-fault mechanism led to a higher probability of system failure at locations 1 and 2. The strike-slip fault mechanism, contrastingly, affected the lowest fragility of the piping system at a higher PGA.


Author(s):  
Peng Li ◽  
Guo-Chin D. Huang ◽  
Alexandros Savvaidis ◽  
Florentia Kavoura ◽  
Robert W. Porritt

Abstract Analysis of earthquake locations and centroid moment tensors (CMTs) is critical in assessing seismogenic structures and connecting earthquakes to anthropogenic activities. The objective of this study was to gain insights into the seismotectonics of the Eagle Ford Shale play (EF), southern Texas, through relative relocation of earthquakes, assessment of CMT solutions, and investigation of the background stress field. Using Texas Seismological Network (TexNet) data from 2017 through 2019, we were able to relocate 326 earthquakes and obtain CMT solutions for 37 ML≥2.0 earthquakes. These earthquakes are located in the sedimentary basin and uppermost crust, with depths ranging from 2 to 10 km. The earthquake groups in the northeastern EF are linearly distributed along the Karnes fault zone, whereas the southern and western groups are spatially scattered around mapped or unmapped faults. CMT solutions identified 32 normal fault earthquakes and five strike-slip earthquakes. The orientation of the fault plane of most normal fault earthquakes is southwest–northeast, whereas the possible fault plane of the strike-slip fault is from north-northwest to south-southeast, which is roughly perpendicular to the normal faults. Normal and strike-slip faults in the EF are of high dip angles, with the dip angles of the most faults ranging from 60° to 80°. Stress inversion results show that the major orientation of maximum horizontal stress (SHmax) is southwest–northeast, with minor local stress-field rotations. We further estimated earthquake energy release in the EF region using moment magnitude from the CMT solutions, and the cumulative earthquake energy release curve reveals three notable increases in cumulative seismic moment, which occurred in January–July 2018 and January–March 2019, and May–August 2019. Whether these energy releases were caused by anthropogenic activities is a matter for further investigation.


2021 ◽  
Author(s):  
Angela Carrillo Ponce ◽  
Torsten Dahm ◽  
Simone Cesca ◽  
Frederik Tilmann ◽  
Andrey Babeyko ◽  
...  

<p>When the earthquake rupture is complex and ruptures of multiple fault segments contribute to the total energy release, the produced wavefield is the superposition of individual signals produced by single subevents. Resolving source complexity for large, shallow earthquakes can be used to improve ground shaking and surface slip estimations, and thus tsunami models. The 2018 Mw 7.9 Alaska earthquake showed such complexity: according to previous studies, the rupture initiated as a right-lateral strike-slip fault on a N-S oriented fault plane, but then jumped onto a left-lateral strike-slip fault oriented westward. Rupture complexity and presence of multiple subevents may characterize a number of other earthquakes. However, even when individual subevents are spatially and/or temporally separated, it is very difficult to identify them from far field recordings. In order to model complex earthquakes we have implemented a multiple double couple inversion scheme within Grond, a tool devoted to the robust characterization of earthquake source parameters included in the Pyrocko software. Given the large magnitude of the target earthquake, we perform our source inversions using broadband body waves data (P and S phases) at teleseismic distances. Our approach starts with a standard moment tensor inversion, which allows to get more insights about the centroid location and overall moment release. These values can then be used to constrain the double source inversion. We discuss the performance of the inversion for the Alaska earthquake, using synthetic and real data. First, we generated realistic synthetic waveforms for a two-subevents source, assuming double couple sources with the strike-slip mechanisms proposed for the Alaska earthquake. We model the synthetic dataset both using a moment tensor and a double double couple source, and demonstrate the stability of the double double couple inversion, which is able to reconstruct the two focal mechanisms, the moment ratio and the relative centroid locations of the two subevents. Synthetic tests show that the inversion accuracy can be in some cases reduced, in presence of noisy data and when the interevent time between subevents is short. A larger noise addition affects the retrieval of the focal mechanism orientations only in some cases, but in general all the parameters were well retrieved. Then, we test our tool using real data for the earthquake. The single source inversion shows that the centroid is shifted 27 s in time and 40 km towards NE with respect to the original assumed location retrieved from the gCMT catalogue. The following double double couple source inversion resolves two subevents with right-lateral and left-lateral strike-slip focal mechanisms and Mw 7.6 and 7.8 respectively. The subevent centroids are separated by less than 40 km in space and less than 20 s in time.</p>


2020 ◽  
Vol 12 (6) ◽  
pp. 977
Author(s):  
Luyun Xiong ◽  
Caijun Xu ◽  
Yang Liu ◽  
Yangmao Wen ◽  
Jin Fang

The acquisition of a 3D displacement field can help to understand the crustal deformation pattern of seismogenic faults and deepen the understanding of the earthquake nucleation. The data for 3D displacement field extraction are usually from GPS/interferometric synthetic aperture radar (InSAR) observations, and the direct solution method is usually adopted. We proposed an iterative least squares for virtual observation (VOILS) based on the maximum a posteriori estimation criterion of Bayesian theorem to correct the errors caused by the GPS displacement interpolation process. Firstly, in the simulation examples, both uniform and non-uniform sampling schemes for GPS observation were used to extract 3D displacement. On the basis of the experimental results of the reverse fault, the normal fault with a strike-slip component, and the strike-slip fault with a reverse component, we found that the VOILS method is better than the direct solution method in both horizontal and vertical directions. When a uniform sampling scheme was adopted, the percentages of improvement for the reverse fault ranged from 3% to 9% and up to 70%, for the normal fault with a strike-slip component ranging from 4% to 8% and up to 68%, and for the strike-slip fault with a reverse component ranging from 1% to 8% and up to 22%. After this, the VOILS method was applied to extract the 3D displacement field of the 2008 Mw 7.9 Wenchuan earthquake. In the East–West (E) direction, the maximum displacement of the hanging wall was 1.69 m and 2.15 m in the footwall. As for the North–South (N) direction, the maximum displacement of the hanging wall was 0.82 m for the southwestern, 0.95 m for the northeastern, while that of the footwall was 0.77 m. In the vertical (U) direction, the maximum uplift was 1.19 m and 0.95 m for the subsidence, which was significantly different from the direct solution method. Finally, the derived vertical displacements were also compared with the ruptures from field investigations, indicating that the VOILS method can reduce the impact of the interpolated errors on parameter estimations to some extent. The simulation experiments and the case study of the 3D displacement field for the 2008 Wenchuan earthquake suggest that the VOILS method proposed in this study is feasible and effective, and the degree of improvement in the vertical direction is particularly significant.


2019 ◽  
Vol 90 (6) ◽  
pp. 2132-2141
Author(s):  
Yuqiang Li ◽  
Dun Wang ◽  
Shenghui Xu ◽  
Lihua Fang ◽  
Yifang Cheng ◽  
...  

ABSTRACT The 17 June 2018 MJMA 6.1 (Mw 5.5) Osaka earthquake exhibits a large non–double‐couple component (∼26%), and its aftershock sequence shows a complicated spatial pattern. To better understand the ruptured faults, we relocate the earthquake sequence using P and S arrival times and waveform cross correlations and calculate the focal mechanisms of all MJMA≥2.5 (Mw≥2.3) earthquakes within three months after the mainshock using P‐wave first‐motion polarities and S/P amplitude ratios. Relocated aftershocks image several faults, the northeast‐striking strike‐slip fault, the north‐northwest‐striking reverse fault, and at least two small northwest‐striking features. P‐wave first motions of the mainshock indicate nearly a pure thrust mechanism. We deduce that the earthquake sequence started from a north‐northwest‐striking reverse fault and propagated to a northeast‐striking strike‐slip fault. The aligned strike‐slip aftershocks occurring in the vicinity of the northeast‐striking strike‐slip fault delineates the growth of several newly formed or reactivated northwest‐striking Riedel shears that are conjugated to the northeast‐striking strike‐slip fault.


Sign in / Sign up

Export Citation Format

Share Document