scholarly journals Design, simulation of AUV (VIAM-AUV1000) for research and rescue

Author(s):  
HUY NGOC TRAN ◽  
Đức Tô Nguyễn ◽  
Thái Hoàng Huỳnh

Autonomous Underwater Vehicles have gained popularity for the last decades, especially a lot of AUVs were considered as the most suitable tool for the purpose of reducing risks of people in dangerous marine operations. This paper presents the preliminary results of the research on hardware design, the controller of an autonomous underwater vehicle model for the task of survey, search and rescue ... With a compact design, AUV can operate in limited spaces. Through a unique ducted propeller and rudder located at the aft, the AUV can perform horizontal motion. It can also control pitch angle and depth motion by an inside mass shifter mechanism (MSM) which changes the vehicle center of gravity. In addition, The AUV is integrated with powerful eletronic system, highprecision sensors helping it carries on missions from simple to complex. The use of Sliding Mode Control (SMC) to independently design the heading and depth controllers for AUV demonstrates the steady stability of the controllers with the nonlinear model, uncertainty parameters and disturbances. Finally, the simulation results show that the SMC controllers can control the AUV nonlinear model to track the desired steering angle and depth with high accuracy and stability.

2013 ◽  
Vol 278-280 ◽  
pp. 1473-1476
Author(s):  
Alexander Lebedev

New methods of the synthesis of multi-dimensional robust and adaptive control systems for the centralized control of the spatial motion of autonomous underwater vehicles (AUV) is developed in this paper, such as variable structure system (VSS) and self-adjustment system with reference model. The conditions of the sliding mode existence and the self-adjustment process stability with the presence of essential dynamic reciprocal effect between all control channels are obtained and strictly proved. The application of synthesized discontinuous control provides the high control quality at any variations of the object parameters within the given ranges.


2021 ◽  
Vol 117 ◽  
pp. 102928
Author(s):  
Jiaqi Zheng ◽  
Lei Song ◽  
Lingya Liu ◽  
Wenbin Yu ◽  
Yiyin Wang ◽  
...  

Author(s):  
Mohammad Saghafi ◽  
Roham Lavimi

In this research, the flow around the autonomous underwater vehicles with symmetrical bodies is numerically investigated. Increasing the drag force in autonomous underwater vehicles increases the energy consumption and decreases the duration of underwater exploration and operations. Therefore, the main objective of this research is to decrease drag force with the change in geometry to reduce energy consumption. In this study, the decreasing or increasing trends of the drag force of axisymmetric bare hulls have been studied by making alterations in the curve equations and creating the optimal geometric shapes in terms of hydrodynamics for the noses and tails of autonomous underwater vehicles. The incompressible, three-dimensional, and steady Navier–Stokes equations have been used to simulate the flow. Also, k-ε Realizable with enhanced wall treatment was used for turbulence modeling. Validation results were acceptable with respect to the 3.6% and 1.4% difference with numerical and experimental results. The results showed that all the autonomous underwater vehicle hulls designed in this study, at an attack angle of 0°, had a lower drag force than the autonomous underwater vehicle hull used for validation except geometry no. 1. In addition, nose no. 3 has been selected as the best nose according to the lowest value of stagnation pressure, and also tail no. 3 has been chosen as the best tail due to the production of the lowest vortex. Therefore, geometry no. 5 has been designed using nose and tail no. 3. The comparison made here showed that the maximum drag reduction in geometry no. 5 was equal to 26%, and therefore, it has been selected as the best bare hull in terms of hydrodynamics.


2018 ◽  
Vol 212 (1) ◽  
pp. 105-123
Author(s):  
Tomasz Praczyk ◽  
Piotr Szymak ◽  
Krzysztof Naus ◽  
Leszek Pietrukaniec ◽  
Stanisław Hożyń

Abstract The paper presents the first part of the final report on all the experiments with biomimetic autono-mous underwater vehicle (BAUV) performed within the confines of the project entitled ‘Autonomous underwater vehicles with silent undulating propulsion for underwater ISR’, financed by Polish National Center of Research and Development. The report includes experiments in the swimming pool as well as in real conditions, that is, both in a lake and in the sea. The tests presented in this part of the final report were focused on low-level control.


2018 ◽  
Vol 213 (2) ◽  
pp. 53-67 ◽  
Author(s):  
Tomasz Praczyk ◽  
Piotr Szymak ◽  
Krzysztof Naus ◽  
Leszek Pietrukaniec ◽  
Stanisław Hożyń

Abstract The paper presents the second part of the final report on all the experiments with biomimetic autonomous underwater vehicle (BAUV) performed within the confines of the project entitled ‘Autonomous underwater vehicles with silent undulating propulsion for underwater ISR’, financed by Polish National Center of Research and Development. The report includes experiments on the swimming pool as well as in real conditions, that is, both in a lake and in the sea. The tests presented in this part of the final report were focused on navigation and autonomous operation.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012080
Author(s):  
Chinonso Okereke ◽  
Nur Haliza Abdul Wahab ◽  
Mohd Murtadha Mohamad ◽  
S H Zaleha

Abstract Water, mostly oceans, covers over two-third of the earth. About 95% of these oceans are yet to be explored which includes 99% of the sea-beds. The introduction of the Internet of Underwater Things (IoUT) underwater has become a powerful technology necessary to the quest to develop a SMART Ocean. Autonomous Underwater Vehicles (AUVs) play a crucial role in this technology because of their mobility and longer energy storage. In order for AUV technologies to be effective, the challenges of AUVs must be adequately solved. This paper provides an overview of the challenges of IoUT, the contributions of AUVs in IoUT as well as the current challenges and opening in AUV. A summary and suggestion for future work was discussed.


2021 ◽  
Vol 29 (1) ◽  
pp. 97-110
Author(s):  
V.S. Bykova ◽  
◽  
A.I. Mashoshin ◽  
I.V. Pashkevich ◽  
◽  
...  

Two safe navigation algorithms for autonomous underwater vehicles are described: algorithm for avoidance of point obstacles including all the moving underwater and surface objects, and limited size bottom objects, and algorithm for bypassing extended obstacles such as bottom elevations, rough lower ice edge, garbage patches. These algorithms are developed for a control system of a heavyweight autonomous underwater vehicle.


Sign in / Sign up

Export Citation Format

Share Document