scholarly journals Building the controler for differential diving modes of VIAM-AUV2000

Author(s):  
Thanh Hải Châu ◽  
Trần Ngọc Huy ◽  
Tôn Thiện Phương ◽  
Huỳnh Mạnh Diễn

This paper presents a new form of the autonomous underwater vehicle with a built-in subsystem of cylinder and counterbalance to support floating and diving, the electrical and mechanical system is built-in a modular form for easy integration and disassembly - mounting and expanding the system. In particular, show optimal calculation for diving robot's profile, simulating stress, deformation impact on the profile of the robot to select the hull's material and thickness to make sure the robot is durable and steady at a depth of 50m. The paper also presents advantages of hybrid design between traditional AUV which uses propeller and rudder to turn and glider using counterbalance and cylinder to dive. In addition, the design of the control system for the robot is also mentioned and clarified through the selection of sensors, actuators, designing electrical circuit, designing 600W thruster and tri-axis rotation angles estimator for stable operation of the robot at a depth of 50m. In addition, the paper also presents the dynamic model of the diving robot VIAMAUV2000, from which, builds, simulates and applies controller for diving robot in two main forms: using thruster (AUV mode) and not using thruster (Glider mode).

2020 ◽  
Vol 3 (SI1) ◽  
pp. SI151-SI156
Author(s):  
Le Khanh Tan ◽  
Tran Ngoc Huy ◽  
Pham Huy Hoang

Autonomous underwater vehicle (AUV) known, as a special purpose underwater research vehicle (SPURV) is really a pocket submarine that could be used in multipurpose such as meteorology, probing the pollution of stream, military spying, exploring an underwater tunnel or wrecked ships and other purposes. With the reason of the power of battery inside of AUV is limited, the aim of this paper is to represent an effect way of control the submerging and surfacing of an AUV in order to save energy for a longer time service or a deeper and further expedition under water. In fact, there are so many ways for saving energy of the battery of AUV and in this paper, the selection of keeping permanently the horizontal direction of the AUV in any operation as the situation of a real submarine is applied. The diving and surfacing of AUV are consigned to the motor of the pump that consumes a little of energy to keep the proportion of the weight and the Archimedes force by pumping water inside or outside of the AUV. The selection of volume of pumped water is considered as a dynamic ballast mass for maintaining the horizontal equilibrium of the AUV at the time of submerging and surfacing. In the other hand, the controlling of the gravity point of AUV for maintaining a fixed position of gravity of the AUV when submerging and surfacing are the main factors of the paper that is also investigated in this paper. Finally, the motor of the propeller or thruster that always spends a great energy has committed only for forward or backward motion of the AUV. In this measure, the motor of thruster does not confronted with a great consummation of energy when submerging and surfacing in an oblique direction as almost all popular measures of control of AUV.


2019 ◽  
Vol 72 (06) ◽  
pp. 1649-1659
Author(s):  
Qingwei Liang ◽  
Tianyuan Sun ◽  
Junlin Ou

Real multi-Autonomous Underwater Vehicle (AUV) cooperative systems operate in complicated marine environments. The interaction between a multi-AUV cooperative system and its marine environment will affect the reliability of the system. Current is an important influencing factor of multi-AUV cooperative systems. A reliability index of multi-AUV cooperative systems known as System Reliable Probability (SRP) is proposed in this study. A method to calculate SRP is introduced, and the influence of current on SRP is discussed in detail. Current is considered an attack source, and the degree of its influence on SRP is calculated. As an example, the performance of this method is shown on two multi-AUV cooperative systems. Results show that the influence of the same current environment on different structures of the multi-AUV cooperative systems differs. This result provides a reference for the structure selection of multi-AUV systems. This study provides a practical method to estimate the reliability of multi-AUV cooperative systems.


2015 ◽  
Vol 528 ◽  
pp. 277-288 ◽  
Author(s):  
DE Haulsee ◽  
MW Breece ◽  
DC Miller ◽  
BM Wetherbee ◽  
DA Fox ◽  
...  

Author(s):  
Ngoc-Huy Tran ◽  
Thanh-Hai Chau

This paper presents the design of the VIAM-AUV2000 autonomous underwater vehicle (AUV) with a built-in cylinder for floatation and counterbalance. The modular structure, including mechanical design, electronic system, and control algorithm, ensures continuous operation for the vehicle at a depth of 50 meters underwater. The main content will consist of two parts: the mechanical implementation and the electrical system. The mechanical implementation part will focus on calculating ship hull profile and material selection; computing and simulating stress and distortion on ship hull and waterproof covering using finite element method with NX Nastran; analyzing and planning cylinder and counterbalance arrangements. At the same time, the advantages of hybrid AUV design inspired from the traditional one with thruster and fins, as well as the underactuated glider form using counterbalance and cylinder for diving and floating, are discussed specifically in the upcoming sections. The electrical system for the robot is also mentioned and clarified through the selection of sensors, actuators, and hardware design to ensure stable operation for the diving robot at a depth of 50m and operate continuously for long periods underwater by using traditional AUV mode and glider mode. Some experimental results of thruster and three-axis tilt estimators with an error of less than 1o are also presented in this paper.


2009 ◽  
Author(s):  
Giacomo Marani ◽  
Junku Yuh ◽  
Song K. Choi ◽  
Son-Cheol Yu ◽  
Luca Gambella ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document