scholarly journals Study on analysis and design of a VIAM- AUV2000 Autonomous Underwater Vehicle (AUV)

Author(s):  
Ngoc-Huy Tran ◽  
Thanh-Hai Chau

This paper presents the design of the VIAM-AUV2000 autonomous underwater vehicle (AUV) with a built-in cylinder for floatation and counterbalance. The modular structure, including mechanical design, electronic system, and control algorithm, ensures continuous operation for the vehicle at a depth of 50 meters underwater. The main content will consist of two parts: the mechanical implementation and the electrical system. The mechanical implementation part will focus on calculating ship hull profile and material selection; computing and simulating stress and distortion on ship hull and waterproof covering using finite element method with NX Nastran; analyzing and planning cylinder and counterbalance arrangements. At the same time, the advantages of hybrid AUV design inspired from the traditional one with thruster and fins, as well as the underactuated glider form using counterbalance and cylinder for diving and floating, are discussed specifically in the upcoming sections. The electrical system for the robot is also mentioned and clarified through the selection of sensors, actuators, and hardware design to ensure stable operation for the diving robot at a depth of 50m and operate continuously for long periods underwater by using traditional AUV mode and glider mode. Some experimental results of thruster and three-axis tilt estimators with an error of less than 1o are also presented in this paper.

2009 ◽  
Vol 43 (2) ◽  
pp. 33-47 ◽  
Author(s):  
Hunter C. Brown ◽  
Ayoung Kim ◽  
Ryan M. Eustice

AbstractThis article provides a general overview of the autonomous underwater vehicle (AUV) research thrusts being pursued within the Perceptual Robotics Laboratory (PeRL) at the University of Michigan. Founded in 2007, PeRL's research centers on improving AUV autonomy via algorithmic advancements in environmentally based perceptual feedback for real-time mapping, navigation, and control. Our three major research areas are (1) real-time visual simultaneous localization and mapping (SLAM), (2) cooperative multi-vehicle navigation, and (3) perception-driven control. Pursuant to these research objectives, PeRL has developed a new multi-AUV SLAM testbed based upon a modified Ocean-Server Iver2 AUV platform. PeRL upgraded the vehicles with additional navigation and perceptual sensors for underwater SLAM research. In this article, we detail our testbed development, provide an overview of our major research thrusts, and put into context how our modified AUV testbed enables experimental real-world validation of these algorithms.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Mohan Santhakumar

This study addresses the detailed modeling and simulation of the dynamic coupling between an underwater vehicle and manipulator system. The dynamic coupling effects due to damping, restoring, and inertial effects of an underwater manipulator mounted on an autonomous underwater vehicle (AUV) are analyzed by considering the actuator and sensor characteristics. A model reference control (MRC) scheme is proposed for the underwater vehicle-manipulator system (UVMS). The effectiveness of the proposed control scheme is demonstrated using numerical simulations along with comparative study between conventional proportional-integral-derivative (PID) control. The robustness of the proposed control scheme is also illustrated in the presence of external disturbances and parameter uncertainties.


ACTA IMEKO ◽  
2018 ◽  
Vol 7 (2) ◽  
pp. 3 ◽  
Author(s):  
Enrico Petritoli ◽  
Fabio Leccese

<span lang="EN-GB">This paper examines the development of an attitude and control system for a tailless AUV (Autonomous Underwater Vehicle) without movable control surfaces. As the AUV does not have movable surfaces, the buoyancy system and the center of gravity displacement manage the entire maneuvering system.</span>


Information ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 396
Author(s):  
João Falcão Carneiro ◽  
João Bravo Pinto ◽  
Nuno A. Cruz ◽  
Fernando Gomes de Almeida

The growing needs in exploring ocean resources have been pushing the length and complexity of autonomous underwater vehicle (AUV) missions, leading to more stringent energy requirements. A promising approach to reduce the energy consumption of AUVs is to use variable buoyancy systems (VBSs) as a replacement or complement to thruster action, since VBSs only require energy consumption during limited periods of time to control the vehicle’s floatation. This paper presents the development of an electrohydraulic VBS to be included in an existing AUV for shallow depths of up to 100 m. The device’s preliminary mechanical design is presented, and a mathematical model of the device’s power consumption is developed, based on data provided by the manufacturer. Taking a standard mission profile as an example, a comparison between the energy consumed using thrusters and the designed VBS is presented and compared.


2000 ◽  
Vol 12 (1) ◽  
pp. 60-65 ◽  
Author(s):  
Yutaka Nagashima ◽  
◽  
Takakazu Ishimatsu ◽  
Jamal Tariq Mian ◽  

We developed an autonomous underwater vehicle (AUV) with a distributed controller and underwater acoustic communication. It is compact and lightweight thanks to its variable vector propeller and control using sophisticated logic circuits. Control is very precise using underwater ultrasonic command signals. Experiments showed that the AUV moves along a path at the desired position and azimuth. We confirmed the feasibility of our algorithm for increasing ultrasonic communication reliability.


Sign in / Sign up

Export Citation Format

Share Document