FINITE ELEMENT ANALYSIS OF THE DIFFUSION MODEL OF THE BIOCLOGGING OF THE GEOBARRIER

Author(s):  
Oksana V. Ulianchuk-Martyniuk ◽  
◽  
Olha R. Michuta ◽  
Natalia V. Ivanchuk,

The distribution of an organic chemical and the filtration process in the soil which contains a thin geochemical barrier are considered. Microorganism colonies develop in the presence of organic chemicals in the soil which leads to the so-called phenomenon of bioclogging of the pore space. As a result, the conductivity characteristics of both the soil as a whole and the geochemical barrier change. Conjugation conditions as a component of the mathematical model of chemical filtration in the case of inhomogeneity of porous media and the presence of fine inclusions were modified for the case of bioclogging. The numerical solution of the corresponding nonlinear boundary value problem with modified conjugation conditions was found by the finite element method. The conditions of the existence of a generalized solution of the corresponding boundary value problem are indicated. The results on the theoretical accuracy of finite element solutions are presented. Differences in the value of pressure jumps at a thin geochemical barrier were analyzed for the case considered in the article and the classical case on a model example of filtration consolidation of the soil in the base of solid waste storage. The excess pressure in 600 days after the start of the process reaches 25 % of the initial value when taking into account the effect of bioclogging, while is only 6 % for the test case disregarding the specified effect.

2012 ◽  
Vol 182-183 ◽  
pp. 1571-1574
Author(s):  
Qi Sheng Wang ◽  
Jia Dao Lai

In this paper, the weighed error estimation of finite element method for the two-point boundary value problems are discussed. Respectively, the norm estimation of the H1 and L2 are obtained.


2011 ◽  
Vol 317-319 ◽  
pp. 1926-1930 ◽  
Author(s):  
Qi Sheng Wang ◽  
Yi Gao Zhao

In this paper, the method of the nested refinement for triangular mesh and some relevant conclusions are considered. The Κ level triangular grid nested refinement on the plan domain Ω and some related properties are discussed , and the convergence results are obtained for the first boundary value problem of Poisson equation under the nested refinement of triangular finite element.


2021 ◽  
Author(s):  
Marek Macák ◽  
Zuzana Minarechová ◽  
Róbert Čunderlík ◽  
Karol Mikula

<p><span>We presents local gravity field modelling in a spatial domain using the finite element method (FEM). FEM as a numerical method is applied for solving the geodetic boundary value problem with oblique derivative boundary conditions (BC). We derive a novel FEM numerical scheme which is the second order accurate and more stable than the previous one published in [1]. A main difference is in applying the oblique derivative BC. While in the previous FEM approach it is considered as an average value on the bottom side of finite elements, the novel FEM approach is based on the oblique derivative BC considered in relevant computational nodes. Such an approach should reduce a loss of accuracy due to averaging. Numerical experiments present </span><span>(i) </span><span>a reconstruction of EGM2008 as a harmonic function over the extremely complicated Earth’s topography in the Himalayas and Tibetan Plateau, and (ii) local gravity field modelling in Slovakia with the high-resolution 100 x 100 m while using terrestrial gravimetric data.</span></p><p><span>[1] </span>Macák, Z. Minarechová, R. Čunderlík, K. Mikula, The finite element method as a tool to solve the oblique derivative boundary value problem in geodesy. Tatra Mountains Mathematical Publications. Vol. 75, no. 1, 63-80, (2020)</p>


Sign in / Sign up

Export Citation Format

Share Document