Ultrasonic Evaluation of Porosity in Out-of-Autoclave Carbon Fiber–Reinforced Polymer Composite Material

2021 ◽  
Vol 79 (12) ◽  
pp. 1169-1178
Author(s):  
Dulip Samaratunga ◽  
Joseph Severino ◽  
Shant Kenderian

Ultrasonic longitudinal wave propagation is studied in out-of-autoclave (OoA) carbon fiber–reinforced polymer composite material with varying levels of porosity contents. A combination of cure pressures and a solvent is used to produce specimens with void contents in the range of 0% to 22%. Ultrasonic measurements are made in through-transmission mode, and the data is processed to study various aspects of wave interaction with porosity in OoA specimens. The specimens with a wide range of void contents have enabled the study of broader trends of ultrasonic center frequency, wave velocity, and attenuation with respect to porosity. Results show ultrasonic center frequency and wave velocity are decreased linearly as the void content increases. The relationship of ultrasonic wave attenuation can be approximated by a logarithmic relationship when considering the full range of void content studied. Strength measurements of specimens with varying void contents are made using the flatwise tensile (FWT) test. It is observed that the strength rapidly decreases with increasing porosity. Correlations made between FWT strength, ultrasonic wave velocity, and attenuation are best described by logarithmic relationships. The data shows a potential for inferring strength knockdowns due to the presence of porosity based on ultrasonic measurements.

2012 ◽  
Vol 488-489 ◽  
pp. 525-529
Author(s):  
S.T. Agusril ◽  
Norazman M. Nor ◽  
Zi Jun Zhao

Portable bridges are very important for maintaining mobility in the aftermath of natural disaster or in the battlefield. This requirement has lead to the needs for light-weight bridging system for ease in launching, retracting, transporting, and storing. In this research, a foldable bridge with three sections of beam connected together using the hinges connection has been designed and analyzed. The bridge is constructed using sandwich Carbon Fiber Reinforced Polymer (CFRP) which consists of CFRP and Aluminum Honeycomb, as the skin and core, respectively. The uses of materials are expected will reduce the total weight of bridge without decreasing of overall performance. Failure theories of composite material such as Maximum Stress, Maximum Strain, Tsai-Wu and Tsai-Hill failure theories were selected to generate an allowable strength graph. From the graph, can be seen that, the material stresses are in the allowable stress-strain ranges, therefore, the bridge is capable of carrying the design load with sufficient safety factor.


In this examination, common strands like Abaca, Coir and Flax , Abaca and Coir (half breed) , Flax and Coir (cross breed) and Flax and Abaca (crossover) are manufactured with bio epoxy tar utilizing forming technique. In this paper the ideal blending of fortitude and sap is accomplished by utilizing Taguchi strategy. In this effort, flexural unbending nature and rigidity of Abaca besides Coir (half and half), Flax and Coir (hybridand Flax and Abaca (cross breed) composite at dry and wet conditions were considered. Hardness test remained directed utilizing rigidity testing machine. In this effort small scale edifice of the examples are examined by the Skim through Electron Hand-held microscope.


2019 ◽  
Vol 7 (1) ◽  
pp. 30-34
Author(s):  
A. Ajwad ◽  
U. Ilyas ◽  
N. Khadim ◽  
Abdullah ◽  
M.U. Rashid ◽  
...  

Carbon fiber reinforced polymer (CFRP) strips are widely used all over the globe as a repair and strengthening material for concrete elements. This paper looks at comparison of numerous methods to rehabilitate concrete beams with the use of CFRP sheet strips. This research work consists of 4 under-reinforced, properly cured RCC beams under two point loading test. One beam was loaded till failure, which was considered the control beam for comparison. Other 3 beams were load till the appearance of initial crack, which normally occurred at third-quarters of failure load and then repaired with different ratios and design of CFRP sheet strips. Afterwards, the repaired beams were loaded again till failure and the results were compared with control beam. Deflections and ultimate load were noted for all concrete beams. It was found out the use of CFRP sheet strips did increase the maximum load bearing capacity of cracked beams, although their behavior was more brittle as compared with control beam.


Sign in / Sign up

Export Citation Format

Share Document