scholarly journals Comparison of Knee Kinematic Factors Between Ball and Rocket Athletes in Predictable and Unpredictable Cutting Maneuvers

2021 ◽  
Vol 11 (3) ◽  
pp. 199-208
Author(s):  
Elham Hosseini ◽  
◽  
Abdolhamid Daneshjoo ◽  
Mansour Sahebozamani ◽  
◽  
...  

Purpose: Anterior cruciate ligament injury is one of the most severe knee injuries that often has a non-contact mechanism and follows an incorrect knee joint alignment. The present study aimed to compare the effect of predictable and unpredictable cutting direction on knee joint kinematics in ball and racket athletes. Methods: The present study was quasi-experimental, and the subjects included 48 female adolescent athletes from badminton (n=12), table tennis (n=12), basketball (n=12), and handball (n=12). After the initial evaluations, the cutting maneuver was performed in predictable and unpredictable ways and recorded by a three-dimension motion analysis. Also, 1-way ANOVA and post hoc tests were used to compare the kinematic parameters of the knee between the ball and racket athletes. Results: The results of the statistical test showed a significant difference in the kinematic parameters of knee flexion (P=0.003), knee valgus (P=0.001), and tibia rotation (P=0.001) between the ball (basketball and handball) and racket athletes (badminton and table tennis) in the predictable cutting. But in the unpredictable cutting, there were no significant differences in the kinematic parameters of the knee flexion (P=0.86), knee valgus (P=0.56), and tibia rotation (P=0.18). Conclusion: The results indicated that ball athletes showed an increased kinematic risk factor such as decreased knee flexion, increased knee valgus, and tibia rotation more than rocket athletes. Therefore, injury prevention programs are more critical in ball athletes.

2014 ◽  
Vol 49 (6) ◽  
pp. 723-732 ◽  
Author(s):  
Karli E. Dill ◽  
Rebecca L. Begalle ◽  
Barnett S. Frank ◽  
Steven M. Zinder ◽  
Darin A. Padua

Context: Ankle-dorsiflexion (DF) range of motion (ROM) may influence movement variables that are known to affect anterior cruciate ligament loading, such as knee valgus and knee flexion. To our knowledge, researchers have not studied individuals with limited or normal ankle DF-ROM to investigate the relationship between those factors and the lower extremity movement patterns associated with anterior cruciate ligament injury. Objective: To determine, using 2 different measurement techniques, whether knee- and ankle-joint kinematics differ between participants with limited and normal ankle DF-ROM. Design: Cross-sectional study. Setting: Sports medicine research laboratory. Patients or Other Participants: Forty physically active adults (20 with limited ankle DF-ROM, 20 with normal ankle DF-ROM). Main Outcome Measure(s): Ankle DF-ROM was assessed using 2 techniques: (1) nonweight-bearing ankle DF-ROM with the knee straight, and (2) weight-bearing lunge (WBL). Knee flexion, knee valgus-varus, knee internal-external rotation, and ankle DF displacements were assessed during the overhead-squat, single-legged squat, and jump-landing tasks. Separate 1-way analyses of variance were performed to determine whether differences in knee- and ankle-joint kinematics existed between the normal and limited groups for each assessment. Results: We observed no differences between the normal and limited groups when classifying groups based on nonweight-bearing passive-ankle DF-ROM. However, individuals with greater ankle DF-ROM during the WBL displayed greater knee-flexion and ankle-DF displacement and peak knee flexion during the overhead-squat and single-legged squat tasks. In addition, those individuals also demonstrated greater knee-varus displacement during the single-legged squat. Conclusions: Greater ankle DF-ROM assessed during the WBL was associated with greater knee-flexion and ankle-DF displacement during both squatting tasks as well as greater knee-varus displacement during the single-legged squat. Assessment of ankle DF-ROM using the WBL provided important insight into compensatory movement patterns during squatting, whereas nonweight-bearing passive ankle DF-ROM did not. Improving ankle DF-ROM during the WBL may be an important intervention for altering high-risk movement patterns commonly associated with noncontact anterior cruciate ligament injury.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Bahram Sheikhi ◽  
Amir Letafatkar ◽  
Jennifer Hogg ◽  
Esmaiel Naseri-Mobaraki

Abstract Purpose The purpose of the study was to investigate the influence of a 72-h KT application on trunk and lower extremity kinematics during different landing tasks. Methods Twenty-nine competitive male athletes participated in this study. The sum of knee valgus and lateral trunk lean, symmetry index (SI), and peak angles of lateral trunk lean, hip flexion, knee abduction and flexion were assessed for all participants during single-leg drop landing (SLDL), single-leg vertical drop jump (SLVDJ), vertical drop jump (DLVDJ), and double leg forward jump (DLFJ), at baseline and seventy-two hours following KT application. Results The KT application resulted in more knee flexion and abduction, sum of knee valgus and lateral trunk lean as compared with the non-KT condition during SLDL (P < 0.05). Nonetheless, there were no differences in SI, maximum angle of the lateral trunk lean during SLDL, SLVDJ, nor hip flexion, knee abduction, and flexion during DLVDJ, and DLFJ tasks (P > 0.05). Conclusions The research findings suggest that KT after 72-h application may improve knee abduction and sum of knee valgus and lateral trunk lean during SLDL, knee flexion during SLDL and SLVDJ in individuals displaying risky single-leg kinematics. Therefore, KT application may marginally improve high-risk landing kinematics in competitive male athletes. Level of evidence Level III.


2020 ◽  
Vol 11 (1) ◽  
pp. 130
Author(s):  
Datao Xu ◽  
Xinyan Jiang ◽  
Xuanzhen Cen ◽  
Julien S. Baker ◽  
Yaodong Gu

Volleyball players often land on a single leg following a spike shot due to a shift in the center of gravity and loss of balance. Landing on a single leg following a spike may increase the probability of non-contact anterior cruciate ligament (ACL) injuries. The purpose of this study was to compare and analyze the kinematics and kinetics differences during the landing phase of volleyball players using a single leg (SL) and double-leg landing (DL) following a spike shot. The data for vertical ground reaction forces (VGRF) and sagittal plane were collected. SPM analysis revealed that SL depicted a smaller knee flexion angle (about 13.8°) and hip flexion angle (about 10.8°) during the whole landing phase, a greater knee and hip power during the 16.83–20.45% (p = 0.006) and 13.01–16.26% (p = 0.008) landing phase, a greater ankle plantarflexion angle and moment during the 0–41.07% (p < 0.001) and 2.76–79.45% (p < 0.001) landing phase, a greater VGRF during the 5.87–8.25% (p = 0.029), 19.75–24.14% (p = 0.003) landing phase when compared to DL. Most of these differences fall within the time range of ACL injury (30–50 milliseconds after landing). To reduce non-contact ACL injuries, a landing strategy of consciously increasing the hip and knee flexion, and plantarflexion of the ankle should be considered by volleyball players.


1999 ◽  
Author(s):  
Jordan Lee ◽  
Frank Fronczak

Abstract The knee joint is a six degree-of-freedom joint which has a complex response to loading. The joint has a characteristic behavior for particular ligament injuries such as anterior cruciate ligament failure. The response of the joint to a combination of compressive loading and secondary loadings was examined in this study. The secondary loadings were: an anterior force, a valgus moment, an internal torque, or an external torque. A goat model was used with 17 specimens testing different ligament injuries in vitro, specifically stretched or severed anterior cruciate ligaments (ACL) and lateral collateral ligaments (LCL). The femur was held fixed and the tibia loaded in a specially designed apparatus, allowing complete six degree-of-freedom joint motion. The motion of the tibia with respect to the femur was recorded using a coordinate measuring machine. The knee joint demonstrated sensitivity to ACL injuries but not to LCL injuries for the loadings examined. The response to ACL injuries was more highly dependant on the compressive load than the secondary loadings for all tests.


2017 ◽  
Vol 39 (01) ◽  
pp. 50-57 ◽  
Author(s):  
Melanie Lesinski ◽  
Olaf Prieske ◽  
Rainer Beurskens ◽  
David Behm ◽  
Urs Granacher

AbstractThe purpose of this study was to examine the combined effects of drop-height and surface condition on drop jump (DJ) performance and knee joint kinematics. DJ performance, sagittal and frontal plane knee joint kinematics were measured in jump experienced young male and female adults during DJs on stable, unstable and highly unstable surfaces using different drop-heights (20, 40, 60 cm). Findings revealed impaired DJ performance (Δ5–16%; p<0.05; 1.43≤d≤2.82), reduced knee valgus motion (Δ33–52%; p<0.001; 2.70≤d≤3.59), and larger maximum knee flexion angles (Δ13–19%; p<0.01; 1.74≤d≤1.75) when using higher (60 cm) compared to lower drop-heights (≤40 cm). Further, lower knee flexion angles and velocity were found (Δ8-16%; p<0.01; 1.49≤d≤2.38) with increasing surface instability. When performing DJs from high (60 cm) compared to moderate drop-heights (40 cm) on highly unstable surfaces, higher knee flexion velocity and maximum knee valgus angles were found (Δ15–19%; p<0.01; 1.50≤d≤1.53). No significant main and/or interaction effects were observed for the factor sex. In conclusion, knee motion strategies were modified by the factors ‘drop-height’ and/or ‘surface instability’. The combination of high drop-heights (>40 cm) together with highly unstable surfaces should be used cautiously during plyometrics because this may increase the risk of injury due to higher knee valgus stress.


1984 ◽  
Vol 106 (4) ◽  
pp. 285-294 ◽  
Author(s):  
P. Gely ◽  
G. Drouin ◽  
P. S. Thiry ◽  
G. R. Tremblay

A new composite prosthesis was recently proposed for the anterior cruciate ligament. It is implanted in the femur and the tibia through two anchoring channels. Its intra-articular portion, composed of a fiber mesh sheath wrapped around a silicons rubber cylindrical core, reproduces satisfactorily the ligament response in tension. However, the prosthesis does not only undergo elongation. In addition, it is submitted to torsion in its intra-articular portion and bending at its ends. This paper presents a new method to evaluate these two types of deformations throughout a knee flexion by means of a geometric model of the implanted prosthesis. Input data originate from two sources: (i) a three-dimensional anatomic topology of the knee joint in full extension, providing the localization of the prosthesis anchoring channels, and ii) a kinematic model of the knee describing the motion of these anchoring channels during a physiological flexion of the knee joint. The evaluation method is independent of the way input data are obtained. This method, applied to a right cadaveric knee, shows that the orientation of the anchoring channels has a large effect on the extent of torsion and bending applied to the implanted prosthesis throughout a knee flexion, especially on the femoral side. The study suggests also the best choice for the anchoring channel axes orientation.


1992 ◽  
Vol 8 (1) ◽  
pp. 62-80 ◽  
Author(s):  
Lynda Read ◽  
Walter Herzog

The purpose of this study was to determine resultant knee joint forces and moments during a specific movement in Alpine ski racers. The movement analyzed consisted of a landing from a bump and the initiation of recovery (if necessary). Resultant loads were obtained using an inverse dynamics approach. Results of two specific skiers are contrasted, one skier landing in good form, the second skier landing in poor form. The skier landing in poor form exhibited larger knee flexion, and larger knee joint resultant forces and moments than the skier landing in good form. The movement of the skier landing in poor form has been associated with isolated anterior cruciate ligament (ACL) injury. However, the data obtained in this study do not indicate that either skier was in danger of ACL injury.


Sign in / Sign up

Export Citation Format

Share Document