scholarly journals Overview of Modern Approaches to Visual Odometry

2019 ◽  
pp. 5-14
Author(s):  
Mikhail A. Terekhov ◽  

In this paper we describe the tasks of Visual Odometry and Simultaneous Localization and Mapping systems along with their main applications. Next, we list some approaches used by the scientific community to create such systems in different time periods. We then proceed to explain in detail the more recent method based on bundle adjustment and show some of its variations for different applications. At last, we overview present-day research directions in the field of visual odometry and briefly present our work.

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3228 ◽  
Author(s):  
Yuwei Chen ◽  
Jian Tang ◽  
Changhui Jiang ◽  
Lingli Zhu ◽  
Matti Lehtomäki ◽  
...  

The growing interest and the market for indoor Location Based Service (LBS) have been drivers for a huge demand for building data and reconstructing and updating of indoor maps in recent years. The traditional static surveying and mapping methods can’t meet the requirements for accuracy, efficiency and productivity in a complicated indoor environment. Utilizing a Simultaneous Localization and Mapping (SLAM)-based mapping system with ranging and/or camera sensors providing point cloud data for the maps is an auspicious alternative to solve such challenges. There are various kinds of implementations with different sensors, for instance LiDAR, depth cameras, event cameras, etc. Due to the different budgets, the hardware investments and the accuracy requirements of indoor maps are diverse. However, limited studies on evaluation of these mapping systems are available to offer a guideline of appropriate hardware selection. In this paper we try to characterize them and provide some extensive references for SLAM or mapping system selection for different applications. Two different indoor scenes (a L shaped corridor and an open style library) were selected to review and compare three different mapping systems, namely: (1) a commercial Matterport system equipped with depth cameras; (2) SLAMMER: a high accuracy small footprint LiDAR with a fusion of hector-slam and graph-slam approaches; and (3) NAVIS: a low-cost large footprint LiDAR with Improved Maximum Likelihood Estimation (IMLE) algorithm developed by the Finnish Geospatial Research Institute (FGI). Firstly, an L shaped corridor (2nd floor of FGI) with approximately 80 m length was selected as the testing field for Matterport testing. Due to the lack of quantitative evaluation of Matterport indoor mapping performance, we attempted to characterize the pros and cons of the system by carrying out six field tests with different settings. The results showed that the mapping trajectory would influence the final mapping results and therefore, there was optimal Matterport configuration for better indoor mapping results. Secondly, a medium-size indoor environment (the FGI open library) was selected for evaluation of the mapping accuracy of these three indoor mapping technologies: SLAMMER, NAVIS and Matterport. Indoor referenced maps were collected with a small footprint Terrestrial Laser Scanner (TLS) and using spherical registration targets. The 2D indoor maps generated by these three mapping technologies were assessed by comparing them with the reference 2D map for accuracy evaluation; two feature selection methods were also utilized for the evaluation: interactive selection and minimum bounding rectangles (MBRs) selection. The mapping RMS errors of SLAMMER, NAVIS and Matterport were 2.0 cm, 3.9 cm and 4.4 cm, respectively, for the interactively selected features, and the corresponding values using MBR features were 1.7 cm, 3.2 cm and 4.7 cm. The corresponding detection rates for the feature points were 100%, 98.9%, 92.3% for the interactive selected features and 100%, 97.3% and 94.7% for the automated processing. The results indicated that the accuracy of all the evaluated systems could generate indoor map at centimeter-level, but also variation of the density and quality of collected point clouds determined the applicability of a system into a specific LBS.


Robotics ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 45 ◽  
Author(s):  
Chang Chen ◽  
Hua Zhu ◽  
Menggang Li ◽  
Shaoze You

Visual-inertial simultaneous localization and mapping (VI-SLAM) is popular research topic in robotics. Because of its advantages in terms of robustness, VI-SLAM enjoys wide applications in the field of localization and mapping, including in mobile robotics, self-driving cars, unmanned aerial vehicles, and autonomous underwater vehicles. This study provides a comprehensive survey on VI-SLAM. Following a short introduction, this study is the first to review VI-SLAM techniques from filtering-based and optimization-based perspectives. It summarizes state-of-the-art studies over the last 10 years based on the back-end approach, camera type, and sensor fusion type. Key VI-SLAM technologies are also introduced such as feature extraction and tracking, core theory, and loop closure. The performance of representative VI-SLAM methods and famous VI-SLAM datasets are also surveyed. Finally, this study contributes to the comparison of filtering-based and optimization-based methods through experiments. A comparative study of VI-SLAM methods helps understand the differences in their operating principles. Optimization-based methods achieve excellent localization accuracy and lower memory utilization, while filtering-based methods have advantages in terms of computing resources. Furthermore, this study proposes future development trends and research directions for VI-SLAM. It provides a detailed survey of VI-SLAM techniques and can serve as a brief guide to newcomers in the field of SLAM and experienced researchers looking for possible directions for future work.


Computer ◽  
2021 ◽  
Vol 54 (3) ◽  
pp. 63-67
Author(s):  
Petros Kapsalas ◽  
Aris S. Lalos ◽  
Konstantinos Moustakas ◽  
Dimitrios Serpanos

Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 243 ◽  
Author(s):  
Fukai Zhang ◽  
Ting Rui ◽  
Chengsong Yang ◽  
Jianjun Shi

While the performance of the state-of-the-art point-based VSLAM (vision simultaneous localization and mapping) systems in well textured sequences is impressive, their performance in poorly textured situations is not satisfactory enough. A sensible alternative or addition is to consider lines. In this paper, we propose a novel line-assisted point-based VSLAM algorithm (LAP-SLAM). Our algorithm uses lines without descriptor matching, and the lines are used to assist the computation conducted by points. To the best of our knowledge, this paper proposes a new way to include line information in VSLAM. The basic idea is to use the collinear relationship of points to optimize the current point-based VSLAM algorithm. In LAP-SLAM, we propose a practical algorithm to match lines and compute the collinear relationship of points, a line-assisted bundle adjustment approach and a modified perspective-n-point (PnP) approach. We built our system based on the architecture and pipeline of ORB-SLAM. We evaluate the proposed method on a diverse range of indoor sequences in the TUM dataset and compare with point-based and point-line-based methods. The results show that the accuracy of our algorithm is close to point-line-based VSLAM systems with a much faster speed.


Author(s):  
Zewen Xu ◽  
Zheng Rong ◽  
Yihong Wu

AbstractIn recent years, simultaneous localization and mapping in dynamic environments (dynamic SLAM) has attracted significant attention from both academia and industry. Some pioneering work on this technique has expanded the potential of robotic applications. Compared to standard SLAM under the static world assumption, dynamic SLAM divides features into static and dynamic categories and leverages each type of feature properly. Therefore, dynamic SLAM can provide more robust localization for intelligent robots that operate in complex dynamic environments. Additionally, to meet the demands of some high-level tasks, dynamic SLAM can be integrated with multiple object tracking. This article presents a survey on dynamic SLAM from the perspective of feature choices. A discussion of the advantages and disadvantages of different visual features is provided in this article.


Sign in / Sign up

Export Citation Format

Share Document