scholarly journals An Experimental Study on Oxidized Mercury Adsorption by Bromide Blended Coal Combustion Fly Ash

2021 ◽  
Vol 118 (5) ◽  
pp. 1277-1286
Author(s):  
Mingyu Yu ◽  
Mengyuan Liu ◽  
Guangqian Luo ◽  
Ruize Sun ◽  
Jingyuan Hu ◽  
...  
2020 ◽  
Vol 48 (11) ◽  
pp. 1356-1364
Author(s):  
Jun HAN ◽  
Yang-shuo LIANG ◽  
Bo ZHAO ◽  
Zi-jiang XIONG ◽  
Lin-bo QIN ◽  
...  

2016 ◽  
Vol 857 ◽  
pp. 400-404
Author(s):  
Tian Yu Xie ◽  
Togay Ozbakkaloglu

This paper presents the results of an experimental study on the behavior of fly ash-, bottom ash-, and blended fly and bottom ash-based geopolymer concrete (GPC) cured at ambient temperature. Four bathes of GPC were manufactured to investigate the influence of the fly ash-to-bottom ash mass ratio on the microstructure, compressive strength and elastic modulus of GPC. All the results indicate that the mass ratio of fly ash-to-bottom ash significantly affects the microstructure and mechanical properties of GPCs


2021 ◽  
Author(s):  
Liqiang QI ◽  
Xu WANG ◽  
Wen WANG ◽  
Jingxin LI ◽  
Yan HUANG

Abstract Pyrite and fly ash have certain advantages in adsorption and mercury oxidation. The pyrite-modified fly ash (PY+AC-FA) mercury adsorbent was prepared by mixing pyrite (PY) with acid-modified fly ash (AC-FA), which has better mercury removal effect than AC-FA. The experimental results of mercury adsorption show: when the reaction temperature is 50°C, the best doping proportion of modified fly ash is 20wt%, the mass proportion of pyrite to acid modified fly ash is 4:1, and the flue gas flow rate is 1.0L/min, the adsorbent has the best performance, and the adsorption rate of mercury reaches 91.92%. BET, XRD, SEM, TG-DSG and XRF were used to characterize these adsorbents. And the mechanism of mercury removal of pyrite-modified fly ash adsorbent is inferred: Hg0 is first adsorbed on the surface of the adsorbent, and then oxidized to HgS by the active component FeS2 in pyrite-modified fly ash.


1991 ◽  
Vol 23 (1) ◽  
pp. 1305-1312 ◽  
Author(s):  
Srivats Srinivasachar ◽  
Joseph J. Helble ◽  
Arthur A. Boni

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1267
Author(s):  
David Längauer ◽  
Vladimír Čablík ◽  
Slavomír Hredzák ◽  
Anton Zubrik ◽  
Marek Matik ◽  
...  

Large amounts of coal combustion products (as solid products of thermal power plants) with different chemical and physical properties cause serious environmental problems. Even though coal fly ash is a coal combustion product, it has a wide range of applications (e.g., in construction, metallurgy, chemical production, reclamation etc.). One of its potential uses is in zeolitization to obtain a higher added value of the product. The aim of this paper is to produce a material with sufficient textural properties used, for example, for environmental purposes (an adsorbent) and/or storage material. In practice, the coal fly ash (No. 1 and No. 2) from Czech power plants was firstly characterized in detail (X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX), particle size measurement, and textural analysis), and then it was hydrothermally treated to synthetize zeolites. Different concentrations of NaOH, LiCl, Al2O3, and aqueous glass; different temperature effects (90–120 °C); and different process lengths (6–48 h) were studied. Furthermore, most of the experiments were supplemented with a crystallization phase that was run for 16 h at 50 °C. After qualitative product analysis (SEM-EDX, XRD, and textural analytics), quantitative XRD evaluation with an internal standard was used for zeolitization process evaluation. Sodalite (SOD), phillipsite (PHI), chabazite (CHA), faujasite-Na (FAU-Na), and faujasite-Ca (FAU-Ca) were obtained as the zeolite phases. The content of these zeolite phases ranged from 2.09 to 43.79%. The best conditions for the zeolite phase formation were as follows: 4 M NaOH, 4 mL 10% LiCl, liquid/solid ratio of 30:1, silica/alumina ratio change from 2:1 to 1:1, temperature of 120 °C, process time of 24 h, and a crystallization phase for 16 h at 50 °C.


Sign in / Sign up

Export Citation Format

Share Document