scholarly journals Optimization of Process Parameters for Injection Moulding of Nylon6/SiC and Nylon6/B4C Polymer Matrix Composites

2022 ◽  
Vol 18 (2) ◽  
pp. 223-232
Author(s):  
G. Boopathy ◽  
K. Gurusami ◽  
M. Chinnapandian ◽  
K. R. Vijayakumar
2018 ◽  
Vol 15 (2) ◽  
pp. 159-164
Author(s):  
K R Dinesh ◽  
Gururaj Hatti

Due to their cost effectiveness, greater strength and ease of fabrication, polymer composites are noticeable candidate almost in all areas. However, when they are used in their original form they possess very low wear resistance and hardness. The present investigation gives information on mechanical properties of polymer matrix composites where LDPE (Low density polyethylene) is used as polymer matrix and TiO2, Al2O3 and CaCO3 are used as reinforcements. The samples were prepared according to ASTM standards by injection moulding machine with varying percentage of reinforcements in polymer matrix. Tests viz., tensile, flexural impact are carried out.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Mohammed Yunus ◽  
Mohammad S. Alsoufi

Hybrid polymer matrix composites (HPMC) are prominent material for the formation of biomaterial and offer various advantages such as low cost, high strength, and the fact that they are easy to manufacture. However, they are associated with low mechanical (low hardness) and tribological properties (high wear rate). The average hip joint load fluctuates between three to five times of the body weight during jumping and jogging and depends on various actions relating to body positions. Alternate bone and prosthesis material plays a critical role in attaining strength as it determines the method of load transferred to the system. The material property called modulus of elasticity is an important design variable during the selection of the geometry and design methodology. The present work is demonstrated on how to improve the properties of high-density polyethylene (HDPE) substantially by the addition of bioceramic fillers such as titanium oxide (TiO2) and alumina (Al2O3). The volume fractions of Al2O3 and TiO2 are limited to 20% and 10%, respectively. Samples were fabricated as per ASTM standards using an injection moulding machine and various properties such as mechanical (tensile, flexural, and impact), tribological (hardness, wear), and corrosion including SEM, density, and fractography analysis studied. Experimental results revealed that an injection moulding process is suitable for producing defect-free mould HPMC. HPMC comprising 70% HDPE/20% Al2O3/10% TiO2 has proved biocompatible and a substitute for biomaterial. A substantial increase in the mechanical and tribological properties and full resistance to corrosion makes HPMC suitable for use in orthopaedic applications such as human bone replacement, bone fixation plates, hip joint replacement, bone cement, and bone graft in bone surgery.


Author(s):  
Ru-Min Wang ◽  
Shui-Rong Zheng ◽  
Ya-Ping Zheng

2021 ◽  
Vol 1107 (1) ◽  
pp. 012057
Author(s):  
Fadare Olugbenga Babatunde ◽  
Adewuyi Benjamin Omotayo ◽  
Oladele Isiaka Oluwole ◽  
Kingsley Ukoba

Sign in / Sign up

Export Citation Format

Share Document