scholarly journals К ВОПРОСУ ТЕРМОДИНАМИЧЕСКОГО ПРОЕКТИРОВАНИЯ КАМЕРЫ ЖРД

2019 ◽  
pp. 28-38
Author(s):  
Парвиз Шахмурад оглы Абдуллаев ◽  
Ниджат Парвиз оглы Абдулла

Analysis of the thermodynamic and thermophysical properties of combustion products (CP) in the liquid rocket engine (LRE) chamber shows that their dissociation degree depends on temperature T, gas expansion degree ε, etc. Practically, CP’s are always chemically active working fluid, therefore the number of moles N of the products varies along the length of the LRE chamber in the entire reaction mixture. The local values of the parameters T and N depend on the specific physical conditions. Therefore, the distribution of local numbers of moles of the components of the gas mixture and its heat capacities can be represented as dependencies N~f(T) and c~g(T). For this purpose based on the numerical values of the moles and the heat capacities of the gas mixture components in the main sections of the LRE chamber are formed as corresponding empirical functions through interpolation. Analysis of changes in moles and weight fractions of gaseous and condensed СP’s components shows that, depending on the specific conditions (α, Km, pc, ε), the number of moles of one group of individual substances increases, while these parameters of the other group decrease. These changes are alternating in nature and lead to the formation of new centers -sources of chemical and thermal energy along the length of the LRE nozzle. Thus, for different conditions (α, Km, pc, ε), the design of the LRE chamber should be carried out taking into account the nature of the change in N, cp, cv, and γ. Therefore, from energy conversion, the number of moles of the i-th CP component can be represented as a function Ni = f(Ti) or Ni = f(x,y). Numerical studies show that, based on the Ni values in the main sections of the LRE chamber with a given length, it is possible to form linear or nonlinear empirical functions in the form Ni= f(x) by interpolation. Depending on the specific tasks, one of the interpolation functions can be taken into account in the formulas for calculating the specific heats of CP. In this case, to form the refined geometry of the LRE chamber, the thermo-gas-dynamic calculation is repeated taking into account new indicated dependencies. Consequently, the system of equations for the thermodynamic calculation of an LRE is solved taking into account new functions. This approach allows forming the optimal contour of the LRE chamber at the preliminary stage of engine design and improving the results of gas-dynamic calculation and profiling of the nozzle using a modified method of characteristics. In the framework of the presented studies, to obtain an optimal geometry for the LRE nozzle, are compared values of the velocities, which obtained using the solutions of the direct and inverse problems. Thus, the correct consideration of changes in the basic parameters along the nozzle length allows us to organize the correct operation of the LRE chamber by changing the thermal properties of CP along the nozzle length in all flight conditions of the flight vehicle. This circumstance requires some improvement of the principles and schemes of regulation systems of the LRE operation, which leads to the conduct of extensive researches in this direction.

2016 ◽  
Vol 5 (6) ◽  
pp. 30-37
Author(s):  
Дорофеев ◽  
A. Dorofeev ◽  
Бурцев ◽  
I. Burtsev

A system for burning of a destroyed highly toxic substance with formation of a vertical supersonic stream of combustion products moved away to the atmosphere on considerable heights has been considered. A technique and an algorithm for conjugated gas-dynamic and thermodynamic calculation of working processes in two-zonal unit with primary burning using air in a camera similar to the one of a liquid rocket engine, and after-burning in a supersonic flow have been proposed. The technique has been approved on the examples of after-burning mathematical modeling and a parametrical research on combustion completeness influence on composition and properties of products resulting from heptyl combustion in air with after-burning in case of methane supply in the second zone.


2019 ◽  
pp. 4-17
Author(s):  
Майя Владимировна Амброжевич ◽  
Михаил Анатольевич Шевченко

The basic thermophysical parameter of the working fluid of all thermal machines without exception is isobaric heat capacity (specific heat at constant pressure). Traditionally, in engineering calculations of isobaric heat capacity are determined as a tabular value for average heat capacities, or approximated with a square parabola within a given temperature range. Isobaric heat capacity is a function of temperature only. At the current level of GTE development, when the overall compressor pressure ratio is already up to 50 and the tendency of its increase remains it is unacceptable to neglect the pressure. However, the turbine inlet gas temperature also rises that will inevitably lead to the effect of thermal dissociation in the combustion products of the gas turbine engine. The studies of the thermal dissociation effect influence on the parameters of the working process of advanced GTE show that this ignoring leads to computational errors. At the present time, there are mathematical models that allow calculating the isobaric heat capacity as a function of temperature and pressure (taking into account the effect of thermal dissociation) but they are laborious, which is not always practical when estimate calculations performing and program algorithms writing. Consequently, the authors posed the problem of obtaining of simple analytic relationships that make it possible to calculate the isobaric heat capacity as a function of temperature and pressure (taking into account the effect of thermal dissociation). Based on the tabular data for the main components of the gas turbine combustion products within a given range of pressures and temperatures (nitrogen: p = 1 ... 200 bar, T = 150 ... 2870 K, oxygen: p = 1 ... 200 bar, T = 210 ... 2870 K, argon: p = 1 ... 200 bar, T = 190 ... 1300 K, the water vapor: p = 0.1 ... 200 bar, T = 640 ... 1250 K and p = 0.1 ... 400 bar and T = 1250 ... 3200 K, carbon dioxide: p = 1 ... 200 bar, T = 390 ... 2600 K), analytical dependencies were obtained for the calculation of isobaric heat capacities as functions of temperature and pressure taking into account the effect of thermal dissociation. The results of the calculations were compared with tabulated experimental data.


Akustika ◽  
2021 ◽  
pp. 61-64
Author(s):  
Anna Lubyanchenko ◽  
Aleksandr Shashurin ◽  
Nickolay Ivanov

The exhaust tract with a silencer installed in it is represented by a design scheme consisting of a set of separate volumes connected to each other by holes or pipes. The following assumptions were made during the calculations: working fluid (combustion products), ideal gas, gas – dynamic parameters are averaged by volume, thermodynamic parameters are constant, the walls of the structure are rigid, the turbulent jet behind the exhaust tract is non-isothermal. The basic equations of the gas-dynamic mathematical model are used: the equation of conservation of matter, the equations of conservation of energy, the equations of state. After the transformations, dependences are obtained that allow us to determine the flow rate at the gas outlet of the dynamic path, pressure, and temperature in various sections of the path.


Author(s):  
Joseph Rabovitser ◽  
Stan Wohadlo ◽  
John M. Pratapas ◽  
Serguei Nester ◽  
Mehmet Tartan ◽  
...  

Paper presents the results from development and successful testing of a 200 kW POGT prototype. There are two major design features that distinguish POGT from a conventional gas turbine: a POGT utilizes a partial oxidation reactor (POR) in place of a conventional combustor which leads to a much smaller compressor requirement versus comparably rated conventional gas turbine. From a thermodynamic perspective, the working fluid provided by the POR has higher specific heat than lean combustion products enabling the POGT expander to extract more energy per unit mass of fluid. The POGT exhaust is actually a secondary fuel gas that can be combusted in different bottoming cycles or used as synthesis gas for hydrogen or other chemicals production. Conversion steps for modifying a 200 kW radial turbine to POGT duty are described including: utilization of the existing (unmodified) expander; replacement of the combustor with a POR unit; introduction of steam for cooling of the internal turbine structure; and installation of a bypass air port for bleeding excess air from the compressor discharge because of 45% reduction in combustion air requirements. The engine controls that were re-configured for start-up and operation are reviewed including automation of POGT start-up and loading during light-off at lean condition, transition from lean to rich combustion during acceleration, speed control and stabilization under rich operation. Changes were implemented in microprocessor-based controllers. The fully-integrated POGT unit was installed and operated in a dedicated test cell at GTI equipped with extensive process instrumentation and data acquisition systems. Results from a parametric experimental study of POGT operation for co-production of power and H2-enriched synthesis gas are provided.


Author(s):  
А.В. Саврико ◽  
С.Н. Лымич ◽  
К.В. Кружаев ◽  
В.С. Левин ◽  
А.В. Москвичев

Приведено исследование зависимости газодинамических характеристик стенда от применяемого материала трубопровода. Oсновополагающими факторами, влияющими на работоспособность стенда, являются выходные параметры - давление и расход рабочего тела, которые напрямую зависят от потерь давления на трение, создаваемого элементами стенда. Для оценки степени влияния материалов на потери стенда выбраны два вида труб: полипропиленовые и металлические. Аналитические расчёты потери давления рассматриваемых трубопроводов из различного материала показали, что трубопроводы из полипропилена предпочтительнее. Однако при проведении эксперимента получены противоположные данные, которые показали, что в полипропиленовых магистралях возможно присутствие значительного количества диафрагм: в местах пайки труб, образовавшихся в процессе изготовления. Именно этот факт способствует существенному повышению значений сопротивлений в полипропиленовых трубопроводах на 20 % по сравнению со стальными трубами, где диафрагмы отсутствуют. В результате проведения исследования был введен коэффициент, учитывающий влияние диафрагм полипропиленового трубопровода при аналитическом расчете на сопротивление. Для сохранения более точных снимаемых значений с газодинамических стендов целесообразнее использовать трубопроводы из металла, в которых рассчитать потери возможно с отклонениями до 3 % Here we give the study of the dependence of the gas-dynamic characteristics of the stand on the pipeline material used. The fundamental factors affecting the performance of the stand are the output parameters-the pressure and flow rate of the working fluid, which directly depend on the friction pressure losses created by the elements of the stand. To assess the degree of influence of materials on the losses of the stand, we selected two types of pipes: polypropylene and metal. Analytical calculations of the pressure loss of the considered pipelines made of various materials have shown that pipelines made of polypropylene are preferable. However, during the experiment, we obtained the opposite data, which showed that a significant number of diaphragms may be present in polypropylene pipelines: in the places of soldering of pipes formed during the manufacturing process. This fact contributes to a significant increase in the resistance values in polypropylene pipelines by 20 % compared to steel pipes, where there are no diaphragms. As a result of the study, we introduced a coefficient that takes into account the influence of polypropylene pipeline diaphragms in the analytical calculation of resistance. To preserve more accurate values taken from gas-dynamic stands, it is more expedient to use metal pipelines in which it is possible to calculate losses with deviations of up to 3 %


Sign in / Sign up

Export Citation Format

Share Document