scholarly journals Synthesis of A Digital PID/LQR Control System for Duty-Cycle Modulation Buck Converters

Author(s):  
Paul Owoundi Etouke ◽  
Jean Mbihi ◽  
Leandre Nneme Nneme

<p>This research paper presents a synthesis approach of a digital optimal PID/LQR control system for DCM (duty-cycle cycle modulation) Buck converters. The step response of the DCM Buck converter is obtained under Multisim virtual simulation framework. The related data file is saved as *.SCP format, and imported into EditPad Lite7 editor, then exported as Matlab file to be processed. The transfer function of the DCM Buck converter is computed from the imported step response data. Then, using the zoh (zero order holder) discretization method with 100 ms resampling period, the z-transfer function of the DCM Buck converter is computed, and that of the analog optimal PID/LQR(linear quadratic regulator) controller is calculated using Tustin’s discretization technique. Furthermore, the step response of the related closed loop digital PID control system is simulated and compared to that of the original analog PID/LQR control system. The simulation results obtained are presented in order to show the high precision as well as the reliability of Matlab-based synthesis of digital optimal PID/LQR control systems for DCM Buck converters.</p>

Author(s):  
Qalisha Putri Syahna ◽  
Elvan Yuniarti ◽  
Edi Kurniawan

Research has been conducted to analyzed the responses of the two axis camera gimbal control system for pitch and roll direction using the Linear Quadratic Regulator (LQR) control system. It focused on the effect from the value of gain Q in calculation of the LQR. The system output was plotted into a step signal so it will be analyzed with transient response method and plotted into sinusoidal signals to find the amplitude value along with the amplitude time. For comparison, the PID control system with the auto-tuning method was also used in this study. It has been done in order to find out whether the LQR control system is more appropriate to use in the two axis camera gimbal system or not. The result from the analysis of the variation of the Q value given at both angles is that the system runs stable when the value of P= 4 for roll angle and P= 6 for pitch angle. For the effect from value of gain Q on the whole system is it will make the output significally changed when the P=1-10. While the results of the comparison can prove that the LQR control system has a better system responses.


Author(s):  
M. R. Qader

<p class="Default"><span>The aim of this study is to design a control strategy for the angular rate (speed) of a DC motor by varying the terminal voltage. This paper describes various designs for the control of direct current (DC) motors. We derive a transfer function for the system and connect it to a controller as feedback, taking the applied voltage as the system input and the angular velocity as the output. Different strategies combining proportional, integral, and derivative controllers along with phase lag compensators and lead integral compensators are investigated alongside the linear quadratic regulator. For each controller transfer function, the step response, root locus, and bode plot are analysed to ascertain the behaviour of the system, and the results are compared to identify the optimal strategy. It is found that the linear quadratic controller provides the best overall performance in terms of steady-state error, response time, and system stability. The purpose of the study that took place was to design the most appropriate controller for the steadiness of DC motors. Throughout this study, analytical means like tuning methods, loop control, and stability criteria were adopted. The reason for this was to suffice the preconditions and obligations. Furthermore, for the sake of verifying the legitimacy of the controller results, modelling by MATLAB and Simulink was practiced on every controller.</span></p>


2020 ◽  
Vol 26 (21-22) ◽  
pp. 2037-2049
Author(s):  
Xiao Yan ◽  
Zhao-Dong Xu ◽  
Qing-Xuan Shi

Asymmetric structures experience torsional effects when subjected to seismic excitation. The resulting rotation will further aggravate the damage of the structure. A mathematical model is developed to study the translation and rotation response of the structure during seismic excitation. The motion equations of the structures which cover the translation and rotation are obtained by the theoretical derivations and calculations. Through the simulated computation, the translation and rotation response of the structure with the uncontrolled system, the tuned mass damper control system, and active tuned mass damper control system using linear quadratic regulator algorithm are compared to verify the effectiveness of the proposed active control system. In addition, the linear quadratic regulator and fuzzy neural network algorithm are used to the active tuned mass damper control system as a contrast group to study the response of the structure with different active control method. It can be concluded that the structure response has a significant reduction by using active tuned mass damper control system. Furthermore, it can be also found that fuzzy neural network algorithm can replace the linear quadratic regulator algorithm in an active control system. Because fuzzy neural network algorithm can control the process on an uncertain mathematical model, it has more potential in practical applications than the linear quadratic regulator control method.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Alain G. de Souza ◽  
Luiz C. G. de Souza

The design of the spacecraft Attitude Control System (ACS) becomes more complex when the spacecraft has different type of components like, flexible solar panels, antennas, mechanical manipulators and tanks with fuel. The interaction between the fuel slosh motion, the panel’s flexible motion and the satellite rigid motion during translational and/or rotational manoeuvre can change the spacecraft center of mass position damaging the ACS pointing accuracy. This type of problem can be considered as a Fluid-Structure Interaction (FSI) where some movable or deformable structure interacts with an internal fluid. This paper develops a mathematical model for a rigid-flexible satellite with tank with fuel. The slosh dynamics is modelled using a common pendulum model and it is considered to be unactuated. The control inputs are defined by a transverse body fixed force and a moment about the centre of mass. A comparative investigation designing the satellite ACS by the Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) methods is done. One has obtained a significant improvement in the satellite ACS performance and robustness of what has been done previously, since it controls the rigid-flexible satellite and the fuel slosh motion, simultaneously.


Author(s):  
Eungkil Lee ◽  
Tao Sun ◽  
Yuping He

This paper presents a parametric study of linear lateral stability of a car-trailer (CT) combination in order to examine the fidelity, complexity, and applicability for control algorithm development for CT systems. Using MATLAB software, a linear yaw-roll model with 5 degrees of freedom (DOF) is developed to represent the CT combination. In the case of linear stability analysis, a parametric study was carried out using eigenvalue analysis based on a linear yaw-roll CT model with varying parameters. Built upon the linear stability analysis, an active trailer differential braking (ATDB) controller was designed for the CT system using the linear quadratic regulator (LQR) technique. The simulation study presented in this paper shows the effectiveness of the proposed LQR control design and the influence of different trailer parameters.


Author(s):  
Trong-Thang Nguyen

<span>This research aims to propose an optimal controller for controlling the speed of the Direct Current (DC) motor. Based on the mathematical equations of DC Motor, the author builds the equations of the state space model and builds the linear quadratic regulator (LQR) controller to minimize the error between the set speed and the response speed of DC motor. The results of the proposed controller are compared with the traditional controllers as the PID, the feed-forward controller. The simulation results show that the quality of the control system in the case of LQR controller is much higher than the traditional controllers. The response speed always follows the set speed with the short conversion time, there isn't overshoot. The response speed is almost unaffected when the torque impact on the shaft is changed.</span>


2021 ◽  
Vol 10 (1) ◽  
pp. 308-318
Author(s):  
Achmad Komarudin ◽  
Novendra Setyawan ◽  
Leonardo Kamajaya ◽  
Mas Nurul Achmadiah ◽  
Zulfatman Zulfatman

Particle swarm optimization (PSO) is an optimization algorithm that is simple and reliable to complete optimization. The balance between exploration and exploitation of PSO searching characteristics is maintained by inertia weight. Since this parameter has been introduced, there have been several different strategies to determine the inertia weight during a train of the run. This paper describes the method of adjusting the inertia weights using fuzzy signatures called signature PSO. Some parameters were used as a fuzzy signature variable to represent the particle situation in a run. The implementation to solve the tuning problem of linear quadratic regulator (LQR) control parameters is also presented in this paper. Another weight adjustment strategy is also used as a comparison in performance evaluation using an integral time absolute error (ITAE). Experimental results show that signature PSO was able to give a good approximation to the optimum control parameters of LQR in this case.


2016 ◽  
Vol 9 (2) ◽  
pp. 70 ◽  
Author(s):  
Osama Elshazly ◽  
Hossam Abbas ◽  
Zakarya Zyada

In this paper, development of a reduced order, augmented dynamics-drive model that combines both the dynamics and drive subsystems of the skid steering mobile robot (SSMR) is presented. A Linear Quadratic Regulator (LQR) control algorithm with feed-forward compensation of the disturbances part included in the reduced order augmented dynamics-drive model is designed. The proposed controller has many advantages such as its simplicity in terms of design and implementation in comparison with complex nonlinear control schemes that are usually designed for this system. Moreover, the good performance is also provided by the controller for the SSMR comparable with a nonlinear controller based on the inverse dynamics which depends on the availability of an accurate model describing the system. Simulation results illustrate the effectiveness and enhancement provided by the proposed controller.


Robotica ◽  
2020 ◽  
pp. 1-11
Author(s):  
Yun Ling ◽  
Jian Wu ◽  
Weiping Zhou ◽  
Yubiao Wang ◽  
Changcheng Wu

SUMMARY This paper proposes a novel laser beam tracking mechanism for a mobile target robot that is used in shooting ranges. Compared with other traditional tracking mechanisms and modules, the proposed laser beam tracking mechanism is more flexible and low cost in use. The mechanical design and the working principle of the tracking module are illustrated, and the complete control system of the mobile target robot is introduced in detail. The tracking control includes two main steps: localizing the mobile target robot with regards to the position of the laser beam and tracking the laser beam by the linear quadratic regulator (LQR). First of all, the state function of the control system is built for this tracking system; second, the control law is deduced according to the discretized state function; lastly, the stability of the control method is proved by the Lyapunov theory. The experimental results demonstrate that the Hue, Saturation, Value feature-extracting method is robust and is qualified to be used for localization in the laser beam tracking control. It is verified through experiments that the LQR method is of better performance than the conventional Proportional Derivative control in the aspect of converge time, lateral error control, and distance error control.


Sign in / Sign up

Export Citation Format

Share Document