scholarly journals Implementation of Liver Disease Prediction Using Machine Learning

Author(s):  
Boggarapu Sai Surya ◽  
Nitesh Kumar Singh ◽  
S Sasi Rekha

This work Liver Disease Prediction Using Machine Learning is a machine learning application. In this project, you predict whether the patient contain a liver disease or not using python Jupyter Notebook. To predict presence of liver disease we apply some of the classification techniques. It gives an idea of how machine learning helps in medical field and how classification techniques going to predict liver disease using liver disease data set.

Author(s):  
Prof. Dr. R. Sandhiya

In recent times, the diagnosis of heart disease has become a very critical task in the medical field. In the modern age, one person dies every minute due to heart disease. Data science has an important role in processing big amounts of data in the field of health sciences. Since the diagnosis of heart disease is a complex task, the assessment process should be automated to avoid the risks associated with it and alert the patient in advance. This paper uses the heart disease dataset available in the UCI Machine Learning Repository. The proposed work assesses the risk of heart disease in a patient by applying various data mining methods such as Naive Bayes, Decision Tree, KNN, Linear SVM, RBF SVM, Gaussian Process, Neural Network, Adabost, QDA and Random Forest. This paper provides a comparative study by analyzing the performance of various machine learning algorithms. Test results confirm that the KNN algorithm achieved the highest 97% accuracy compared to other implemented ML algorithms.


Author(s):  
Vinutha M.R. ◽  
Chandrika J.

<p class="0abstract"><strong>Abstract—</strong><strong> </strong>Data Mining plays a decisive role especially in medical domain. Decision trees are predominant model in machine learning. Decision trees are simple and very effective classification approach. The decision tree identifies the utmost prime features of a given problem. One of the most common disease in India is Liver Cirrhosis. It is distinctly difficult to uncover Liver Cirrhosis in its initial stage. However early diagnosis of Liver Cirrhosis is highly important.The liver disease data set has a collection of distinguishing features that affect the healthy state of a patient. Machine Learning methods enable knowledge acquisition in early stages and use of this acquired knowledge plays an important role in solving problems like suppose if we want to predict whether the patient with the Liver Cirrhosis has also been suffering from Hepatitis C or not. In order to easily arrive at this knowledge certainly there is a need for fully integrated system. In this paper the collected Liver disease data set is analyzed and prognosticated whether the patient is suffering from liver cirrhosis or not.</p><p class="0abstract"> </p>


Author(s):  
Tsehay Admassu Assegie

Machine-learning approaches have become greatly applicable in disease diagnosis and prediction process. This is because of the accuracy and better precision of the machine learning models in disease prediction. However, different machine learning models have different accuracy and precision on disease prediction. Selecting the better model that would result in better disease prediction accuracy and precision is an open research problem. In this study, we have proposed machine learning model for liver disease prediction using Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) learning algorithms and we have evaluated the accuracy and precision of the models on liver disease prediction using the Indian liver disease data repository. The analysis of result showed 82.90% accuracy for SVM and 72.64% accuracy for the KNN algorithm. Based on the accuracy score of SVM and KNN on experimental test results, the SVM is better in performance on the liver disease prediction than the KNN algorithm.  


Author(s):  
Talasila Bhanuteja ◽  
◽  
Kilaru Venkata Narendra Kumar ◽  
Kolli Sai Poornachand ◽  
Chennupati Ashish ◽  
...  

The turn of events and misuse of a few noticeable Data mining strategies in various genuine application regions (for example Trade, Medical management and Natural science) has induced the usage of such methods in Machine Learning (ML) constrains, to distinct helpful snippets of information of the predefined information in medical services networks, biomedical fields and so forth The exact examination of clinical data set advantages in early illness expectation, patient consideration and local area administrations. The methodology of Machine Learning (ML) has been effectively utilized in grouped technologies including Disease forecast. The objective of generating classifier framework utilizing Machine Learning (ML) models is to massively assist with addressing the well-being related issues by helping the doctors to foresee and analyze illnesses at a beginning phase. Sample information of 4920 patient’s records determined to have 41 illnesses was chosen for examination. A reliant variable was made out of 41 sicknesses. 95 of 132 autonomous variables (symptoms) firmly identified with infections were chosen and advanced. This examination work completed shows the illness expectation framework created utilizing Machine learning calculations like Random Forest, Decision Tree Classifier and LightGBM. The paper confers the relative investigation of the consequences of the above-mentioned algorithms are utilized efficiently.


2021 ◽  
pp. 258-267
Author(s):  
Ana Cholakoska ◽  
Martina Shushlevska ◽  
Zdravko Todorov ◽  
Danijela Efnusheva

Abstract-Machine learning is used extensively in medical diagnosis to predict the existence of diseases. Existing classification algorithms are frequently used for automatic detection of diseases. But most of the times, they do not give 100% accurate results. Boosting techniques are often used in Machine learning to get maximum classification accuracy. Though several boosting techniques are in place but the XGBoost algorithm is doing extremely well for some selected data sets. Building an XGBoost model is simple but improving the model by tuning the parameters is a challenging task. There are many parameters to the XGBoost algorithm and deciding what set of parameters to tune and the ideal values of these parameters is a cumbersome and time taking task. We, in this paper, tuned the XGBoost model for the first time for Liver disease prediction and got 100% accuracy by tuning some of the hyper parameters. It is observed that the model proposed by us exhibited highest classification accuracy compared to all other models built till now by machine learning researchers and some regularly used algorithms like Support Vector Machines (SVM), Naive Bayes (NB), C4.5 Decision tree, Random Belief Networks, Alternating Decision Trees (ADT) experimented by us.


Author(s):  
M. Shyamala Devi ◽  
Kamma Rahul ◽  
Ambati Aaryani Chowdary ◽  
Jampani Sai Monisha Chowday ◽  
Satheesh Manubolu

2019 ◽  
Vol 13 ◽  
Author(s):  
Nandhini Abirami R. ◽  
Durai Raj Vincent

Background: Diagnosing diseases is an intricate job in medical field. Machine learning when applied to health care is capable of early detection of disease which would aid to provide early medical intervention. In heart disease prediction, machine learning techniques have played a significant role. Analysis of disease has become vital in health care sectors. The massive data collected by healthcare sectors are preprocessed and analyzed to discover the underlying information in the data for effective decision making and to provide proper medical intervention. The success of machine learning in medical industry is its capability in analyzing the huge amount of data gathered by the health sector and its effectiveness in decision making. Since medical field involves too many manual processes it has become necessary to automate these procedures. Remarkable advancements in electronic medical records have made it possible. Diagnosing diseases is an intricate job in medical field. Objective: The objective of this research is to design a robust machine learning algorithm to predict heart disease. The prediction of heart disease is performed using Ensemble of machine learning algorithms. This is to boost the accuracy achieved by individual machine learning algorithms. Method: Heart Disease Prediction System is developed where the user can input the patient details and the prediction for the particular patient is made using the model developed. The model will predict the output to be either normal or risky. Linear Discriminant Analysis (LDA), Classification and Regression Trees (CART), Support Vector Machines (SVM), K-Nearest Neighbors (KNN) and Naïve Bayes classifier are used as base learners. These algorithms are combined using random forest as the meta classifier. Results: The predictions of classifier are combined using random forest algorithm. The accuracy is lifted from 85.53% to 87.64% which is an impressive improvement on accuracy. Conclusion: Various techniques were adopted to preprocess the data to suite the requirement of analysis. Feature selections were made to optimize the performance of machine learning algorithms. Ensemble prediction gave better accuracy when combined using Random forest algorithm as combiner. Better feature selection techniques can be applied to further improve the accuracy.


Sign in / Sign up

Export Citation Format

Share Document