Analysis of Machine Learning Classification Techniques for Anomaly Detection with NSL-KDD Data Set

2021 ◽  
pp. 258-267
Author(s):  
Ana Cholakoska ◽  
Martina Shushlevska ◽  
Zdravko Todorov ◽  
Danijela Efnusheva
IJOSTHE ◽  
2018 ◽  
Vol 5 (6) ◽  
pp. 7
Author(s):  
Apoorva Deshpande ◽  
Ramnaresh Sharma

Anomaly detection system plays an important role in network security. Anomaly detection or intrusion detection model is a predictive model used to predict the network data traffic as normal or intrusion. Machine Learning algorithms are used to build accurate models for clustering, classification and prediction. In this paper classification and predictive models for intrusion detection are built by using machine learning classification algorithms namely Random Forest. These algorithms are tested with KDD-99 data set. In this research work the model for anomaly detection is based on normalized reduced feature and multilevel ensemble classifier. The work is performed in divided into two stages. In the first stage data is normalized using mean normalization. In second stage genetic algorithm is used to reduce number of features and further multilevel ensemble classifier is used for classification of data into different attack groups. From result analysis it is analysed that with reduced feature intrusion can be classified more efficiently.


2021 ◽  
pp. 158-166
Author(s):  
Noah Balestra ◽  
Gaurav Sharma ◽  
Linda M. Riek ◽  
Ania Busza

<b><i>Background:</i></b> Prior studies suggest that participation in rehabilitation exercises improves motor function poststroke; however, studies on optimal exercise dose and timing have been limited by the technical challenge of quantifying exercise activities over multiple days. <b><i>Objectives:</i></b> The objectives of this study were to assess the feasibility of using body-worn sensors to track rehabilitation exercises in the inpatient setting and investigate which recording parameters and data analysis strategies are sufficient for accurately identifying and counting exercise repetitions. <b><i>Methods:</i></b> MC10 BioStampRC® sensors were used to measure accelerometer and gyroscope data from upper extremities of healthy controls (<i>n</i> = 13) and individuals with upper extremity weakness due to recent stroke (<i>n</i> = 13) while the subjects performed 3 preselected arm exercises. Sensor data were then labeled by exercise type and this labeled data set was used to train a machine learning classification algorithm for identifying exercise type. The machine learning algorithm and a peak-finding algorithm were used to count exercise repetitions in non-labeled data sets. <b><i>Results:</i></b> We achieved a repetition counting accuracy of 95.6% overall, and 95.0% in patients with upper extremity weakness due to stroke when using both accelerometer and gyroscope data. Accuracy was decreased when using fewer sensors or using accelerometer data alone. <b><i>Conclusions:</i></b> Our exploratory study suggests that body-worn sensor systems are technically feasible, well tolerated in subjects with recent stroke, and may ultimately be useful for developing a system to measure total exercise “dose” in poststroke patients during clinical rehabilitation or clinical trials.


Author(s):  
Hesham M. Al-Ammal

Detection of anomalies in a given data set is a vital step in several applications in cybersecurity; including intrusion detection, fraud, and social network analysis. Many of these techniques detect anomalies by examining graph-based data. Analyzing graphs makes it possible to capture relationships, communities, as well as anomalies. The advantage of using graphs is that many real-life situations can be easily modeled by a graph that captures their structure and inter-dependencies. Although anomaly detection in graphs dates back to the 1990s, recent advances in research utilized machine learning methods for anomaly detection over graphs. This chapter will concentrate on static graphs (both labeled and unlabeled), and the chapter summarizes some of these recent studies in machine learning for anomaly detection in graphs. This includes methods such as support vector machines, neural networks, generative neural networks, and deep learning methods. The chapter will reflect the success and challenges of using these methods in the context of graph-based anomaly detection.


1993 ◽  
Author(s):  
Usama M. Fayyad ◽  
Richard J. Doyle ◽  
W. Nick Weir ◽  
Stanislav Djorgovski

2011 ◽  
Vol 271-273 ◽  
pp. 149-153 ◽  
Author(s):  
Phani Srikanth ◽  
Amarjot Singh ◽  
Devinder Kumar ◽  
Aditya Nagrare ◽  
Vivek Angoth

A number of different classifiers have been used to improve the precision and accuracy and give better classification results. Machine learning classifiers have proven to be the most successful techniques in majority of the fields. This paper presents a comparison of the three most successful machine learning classification techniques SVM, boosting and Local SVM applied to a cancer dataset. The comparison is made on the basis of precision and accuracy along with the training time analysis. Finally, the efficacy of the classifiers is found.


Sign in / Sign up

Export Citation Format

Share Document