scholarly journals Automation of Big Data Analytics Using Robotic Process Automation

Author(s):  
G. Malini

Robotic Process Automation (RPA) is now becomes a buzzword and makes it mark on almost all fields in assisting automation of repetitive human intensive tasks in a simpler manner. RPA is nothing but a software solution that mimics the human interaction with computing software and applications without manual intervention. RPA has already been adapted in almost every business processes which are repetitive. As we are in the age of information the need for retrieval of patterns from raw data is increasing unimaginably so the needs for effective tools are also in a greater need. The effectiveness of RPA can be incorporated into the ever growing data analytics to automate the process of finding patterns and predictions from big data.

2019 ◽  
Vol 8 (3) ◽  
pp. 27-31
Author(s):  
R. P. L. Durgabai ◽  
P. Bhargavi ◽  
S. Jyothi

Data, in today’s world, is essential. The Big Data technology is rising to examine the data to make fast insight and strategic decisions. Big data refers to the facility to assemble and examine the vast amounts of data that is being generated by different departments working directly or indirectly involved in agriculture. Due to lack of resources the pest analysis of rice crop is in poor condition which effects the production. In Andhra Pradesh rice is cultivated in almost all the districts. The goal is to provide better solutions for finding pest attack conditions in all districts using Big Data Analytics and to make better decisions on high productivity of rice crop in Andhra Pradesh.


2021 ◽  
pp. 67-74
Author(s):  
Liudmyla Zubyk ◽  
Yaroslav Zubyk

Big data is one of modern tools that have impacted the world industry a lot of. It also plays an important role in determining the ways in which businesses and organizations formulate their strategies and policies. However, very limited academic researches has been conducted into forecasting based on big data due to the difficulties in capturing, collecting, handling, and modeling of unstructured data, which is normally characterized by it’s confidential. We define big data in the context of ecosystem for future forecasting in business decision-making. It can be difficult for a single organization to possess all of the necessary capabilities to derive strategic business value from their findings. That’s why different organizations will build, and operate their own analytics ecosystems or tap into existing ones. An analytics ecosystem comprising a symbiosis of data, applications, platforms, talent, partnerships, and third-party service providers lets organizations be more agile and adapt to changing demands. Organizations participating in analytics ecosystems can examine, learn from, and influence not only their own business processes, but those of their partners. Architectures of popular platforms for forecasting based on big data are presented in this issue.


2015 ◽  
pp. 2354-2372
Author(s):  
Ebin Deni Raj ◽  
L. D. Dhinesh Babu ◽  
Ezendu Ariwa ◽  
M. Nirmala ◽  
P. Venkata Krishna

Cloud computing has become the cutting-edge technology for information technology processing and high-end computational tasks. Cloud has started playing its part in almost all business processes. Big data in cloud has become the buzzword. The business impact of cloud has deepened with the growth of big data analytics. Current trends such as green cloud computing, mobile cloud computing, and big data have created social as well as business impact. In this chapter, the authors analyze the field of cloud computing and perform an intense literature survey augmented with mathematical analysis. The forecast on the future of cloud and analysis of the current trends shows that cloud computing is a promising technology that will evolve further in years to come.


Web Services ◽  
2019 ◽  
pp. 1262-1281
Author(s):  
Chitresh Verma ◽  
Rajiv Pandey

Big Data Analytics is a major branch of data science where the huge amount raw data is processed to get insight for relevant business processes. Integration of big data, its analytics along with Service Oriented Architecture (SOA) is need of the hour, such integration shall render reusability and scalability to various business processes. This chapter explains the concept of Big Data and Big Data Analytics at its implementation level. The Chapter further describes Hadoop and its technologies which are one of the popular frameworks for Big Data Analytics and envisage integrating SOA with relevant case studies. The chapter demonstrates the SOA integration with Big Data through, two case studies of two different scenarios are incorporated that integrates real world implementation with theory and enables better understanding of the industrial level processes and practices.


Big Data ◽  
2016 ◽  
pp. 1247-1259 ◽  
Author(s):  
Jayanthi Ranjan

Big data is in every industry. It is being utilized in almost all business functions within these industries. Basically, it creates value by converting human decisions into transformed automated algorithms using various tools and techniques. In this chapter, the authors look towards big data analytics from the healthcare perspective. Healthcare involves the whole supply chain of industries from the pharmaceutical companies to the clinical research centres, from the hospitals to individual physicians, and anyone who is involved in the medical arena right from the supplier to the consumer (i.e. the patient). The authors explore the growth of big data analytics in the healthcare industry including its limitations and potential.


Author(s):  
Chitresh Verma ◽  
Rajiv Pandey

Big Data Analytics is a major branch of data science where the huge amount raw data is processed to get insight for relevant business processes. Integration of big data, its analytics along with Service Oriented Architecture (SOA) is need of the hour, such integration shall render reusability and scalability to various business processes. This chapter explains the concept of Big Data and Big Data Analytics at its implementation level. The Chapter further describes Hadoop and its technologies which are one of the popular frameworks for Big Data Analytics and envisage integrating SOA with relevant case studies. The chapter demonstrates the SOA integration with Big Data through, two case studies of two different scenarios are incorporated that integrates real world implementation with theory and enables better understanding of the industrial level processes and practices.


Author(s):  
Dennis T. Kennedy ◽  
Dennis M. Crossen ◽  
Kathryn A. Szabat

Big Data Analytics has changed the way organizations make decisions, manage business processes, and create new products and services. Business analytics is the use of data, information technology, statistical analysis, and quantitative methods and models to support organizational decision making and problem solving. The main categories of business analytics are descriptive analytics, predictive analytics, and prescriptive analytics. Big Data is data that exceeds the processing capacity of conventional database systems and is typically defined by three dimensions known as the Three V's: Volume, Variety, and Velocity. Big Data brings big challenges. Big Data not only has influenced the analytics that are utilized but also has affected technologies and the people who use them. At the same time Big Data brings challenges, it presents opportunities. Those who embrace Big Data and effective Big Data Analytics as a business imperative can gain competitive advantage.


Author(s):  
Sam Goundar ◽  
Akashdeep Bhardwaj ◽  
Shavindar Singh ◽  
Mandeep Singh ◽  
Gururaj H. L.

Big data is emerging, and the latest developments in technology have spawned enormous amounts of data. The traditional databases lack the capabilities to handle this diverse data and thus has led to the employment of new technologies, methods, and tools. This research discusses big data, the available big data analytical tools, the need to use big data analytics with its benefits and challenges. Through a research drawing on survey questionnaires, observation of the business processes, interviews and secondary research methods, the organizations, and companies in a small island state are identified to survey which of them use analytical tools to handle big data and the benefits it proposes to these businesses. Organizations and companies that do not use these tools were also surveyed and reasons were outlined as to why these organizations hesitate to utilize such tools.


2019 ◽  
Vol 8 (S3) ◽  
pp. 35-40
Author(s):  
S. Mamatha ◽  
T. Sudha

In this digital world, as organizations are evolving rapidly with data centric asset the explosion of data and size of the databases have been growing exponentially. Data is generated from different sources like business processes, transactions, social networking sites, web servers, etc. and remains in structured as well as unstructured form. The term ― Big data is used for large data sets whose size is beyond the ability of commonly used software tools to capture, manage, and process the data within a tolerable elapsed time. Big data varies in size ranging from a few dozen terabytes to many petabytes of data in a single data set. Difficulties include capture, storage, search, sharing, analytics and visualizing. Big data is available in structured, unstructured and semi-structured data format. Relational database fails to store this multi-structured data. Apache Hadoop is efficient, robust, reliable and scalable framework to store, process, transforms and extracts big data. Hadoop framework is open source and fee software which is available at Apache Software Foundation. In this paper we will present Hadoop, HDFS, Map Reduce and c-means big data algorithm to minimize efforts of big data analysis using Map Reduce code. The objective of this paper is to summarize the state-of-the-art efforts in clinical big data analytics and highlight what might be needed to enhance the outcomes of clinical big data analytics tools and related fields.


Sign in / Sign up

Export Citation Format

Share Document