scholarly journals Unmanned Aerial Vehicle Forensic Investigation Process : Dji Phantom 4 Drone as A Case Study

Author(s):  
A. Pathania ◽  
D. P. Gangwar ◽  
Shivanshu ◽  
Poonam ◽  
Arpita

A drone, technological term Unmanned aerial vehicle (UAV), means any aircraft operating or designed to operate autonomously or to be piloted remotely without a pilot on board. Essentially, a drone is a flying robot that can be remotely controlled or fly autonomously through software-controlled flight plans in their embedded systems, working in conjunction with onboard sensors and GPS. The easy accessibility to everyone led to an increase in drone crime. Criminals are using drones in many malicious activities worldwide due to the drones’ ability to offer live-stream, real-time video, and image capture, along with the ability to fly and transport goods. Terrorist groups are using aerial drones to conduct and coordinate attacks. Forensic laboratories have been receiving Drone cases throughout India. The drone has been built that can be operated by a radio frequency controller and send live audio-visual feedback. This paper aims to provide a case study of Drone, DJI Phantom 4 and presents the acquisition, examination, analysis of important artifacts recorded flight data and discuss some possible data extractions from its flash memory, GPS (navigator) & SD card.

2018 ◽  
Vol 130 ◽  
pp. 636-643 ◽  
Author(s):  
Muhammad Arsalan Khan ◽  
Wim Ectors ◽  
Tom Bellemans ◽  
Yassine Ruichek ◽  
Ansar-ul-Haque Yasar ◽  
...  

Aerospace ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 23 ◽  
Author(s):  
David Communier ◽  
Ruxandra Mihaela Botez ◽  
Tony Wong

This paper presents the design and wind tunnel testing of a morphing camber system and an estimation of performances on an unmanned aerial vehicle. The morphing camber system is a combination of two subsystems: the morphing trailing edge and the morphing leading edge. Results of the present study show that the aerodynamics effects of the two subsystems are combined, without interfering with each other on the wing. The morphing camber system acts only on the lift coefficient at a 0° angle of attack when morphing the trailing edge, and only on the stall angle when morphing the leading edge. The behavior of the aerodynamics performances from the MTE and the MLE should allow individual control of the morphing camber trailing and leading edges. The estimation of the performances of the morphing camber on an unmanned aerial vehicle indicates that the morphing of the camber allows a drag reduction. This result is due to the smaller angle of attack needed for an unmanned aerial vehicle equipped with the morphing camber system than an unmanned aerial vehicle equipped with classical aileron. In the case study, the morphing camber system was found to allow a reduction of the drag when the lift coefficient was higher than 0.48.


2012 ◽  
Vol 226-228 ◽  
pp. 2376-2379 ◽  
Author(s):  
Ji Ping Hu ◽  
Wen Bin Wu ◽  
Qu Lin Tan

Compared with conventional airborne remote sensing application to engineering geological investigation, High precision Unmanned Aerial Vehicle Remote Sensing (UAV-RS) technology can improve work condition with advantages of high flexibility, low cost, high efficiency and up-to-date situation acquisition. Especially, it has very important engineering significance for quick and urgent geological disaster reconnaissance along transportation lines. In the paper, some aspects of application to transportation-line (pipeline, highway and railway) engineering geological investigation were discussed. The concerned key points, including components of UAV-RS system, data processing workflow and image interpretation were analyzed. As a case study, a UAV-RS application project for transportation-line geological disaster investigation was given. The utilization of this new remote sensing technology successfully collected and discovered potential geological disasters and provided scientific data for timely decision-making.


2017 ◽  
Vol 15 (41) ◽  
pp. 9-26
Author(s):  
Andrés Espinal Rojas ◽  
Andrés Arango Espinal ◽  
Luis Ramos ◽  
Jorge Humberto Erazo Aux

This paper describes the development and implementation of a six-pointed Unmanned Aerial Vehicle [UAV] prototype, designed for finding lost people in hard to access areas, using Arduino MultiWii platform. A platform capable of performing a stable flight to identify people through an on-board camera and an image processing algorithm was developed. Although the use of UAV represents a low cost and quick response –in terms of displacement– solution, capable to prevent or reduce the number of deaths of lost people in away places, also represents a technological challenge, since the recognition of objects from an aerial view is difficult, due to the distance of the UAV to the objective, the UAV’s position and its constant movement. The solution proposed implements an aerial device that performs the image capture, wireless transmission and image processing while it is in a controlled and stable flight.


Author(s):  
T Rajesh Senthil Kumar ◽  
Sivakumar Venugopal ◽  
Balajee Ramakrishnananda ◽  
S Vijay

This paper proposes a methodology to harvest the benefits of camber morphing airfoils for small unmanned aerial vehicle (SUAV) applications. Camber morphing using discrete elements was used to morph the base airfoil, which was split into two, three, and four elements, respectively, to achieve new configurations, into the target one. . In total, thirty morphed airfoil configurations were generated and tested for aerodynamic efficiency at the Reynolds numbers of 2.5 × 105 and 4.8 × 105, corresponding to loiter and cruise Reynolds numbers of a typical SUAV. The target airfoil performance could be closely achieved by combinations of 5 to 8 morphed configurations, the best of which were selected from a pool of thirty morphed airfoil configurations for the typical design specifications of SUAV. Interestingly, some morphed airfoil configurations show a reduction in drag coefficient of 1.21 to 15.17% compared to the target airfoil over a range of flight altitudes for cruise and loiter phases. Inspired by the drag reductions observed, a case study is presented for resizing a SUAV accounting for the mass addition due to the morphing system retaining the benefits of drag reduction.


Sign in / Sign up

Export Citation Format

Share Document