scholarly journals Regulation of pepper fruit color, chloroplasts development and their importance in fruit quality

Author(s):  
Ilan Paran ◽  
Allen Van Deynze

Pepper exhibits large natural variation in chlorophyll content in the immature fruit. To dissect the genetic and molecular basis of this variation, we conducted QTL mapping for chlorophyll content in a cross between light and dark green-fruited parents, PI 152225 and 1154. Two major QTLs, pc1 and pc10, that control chlorophyll content by modulation of chloroplast compartment size in a fruit-specific manner were detected in chromosomes 1 and 10, respectively. The pepper homolog of GOLDEN2- LIKE transcription factor (CaGLK2) was found as underlying pc10, similar to its effect on tomato fruit chloroplast development. A candidate gene for pc1was found as controlling chlorophyll content in pepper by the modulation of chloroplast size and number. Fine mapping of pc1 aided by bulked DNA and RNA-seq analyses enabled the identification of a zinc finger transcription factor LOL1 (LSD-One-Like 1) as a candidate gene underlying pc1. LOL1 is a positive regulator of oxidative stress- induced cell death in Arabidopsis. However, over expression of the rice ortholog resulted in an increase of chlorophyll content. Interestingly, CaAPRR2 that is linked to the QTL and was found to affect immature pepper fruit color in a previous study, did not have a significant effect on chlorophyll content in the present study. Verification of the candidate's function was done by generating CRISPR/Cas9 knockout mutants of the orthologues tomato gene, while its knockout experiment in pepper by genome editing is under progress. Phenotypic similarity as a consequence of disrupting the transcription factor in both pepper and tomato indicated its functional conservation in controlling chlorophyll content in the Solanaceae. A limited sequence diversity study indicated that null mutations in CaLOL1 and its putative interactorCaMIP1 are present in C. chinensebut not in C. annuum. Combinations of mutations in CaLOL1, CaMIP1, CaGLK2 and CaAPRR2 are required for the creation of the extreme variation in chlorophyll content in Capsicum. 

2009 ◽  
Vol 152 (1) ◽  
pp. 71-84 ◽  
Author(s):  
Ana-Rosa Ballester ◽  
Jos Molthoff ◽  
Ric de Vos ◽  
Bas te Lintel Hekkert ◽  
Diego Orzaez ◽  
...  

2020 ◽  
Vol 133 (6) ◽  
pp. 1897-1910 ◽  
Author(s):  
Soo Bin Lee ◽  
Jeong Eun Kim ◽  
Hyoung Tae Kim ◽  
Gyu-Myung Lee ◽  
Byung-Soo Kim ◽  
...  

2017 ◽  
Vol 142 (6) ◽  
pp. 444-453
Author(s):  
Matthew R. Mattia ◽  
John W. Scott

Tomato (Solanum lycopersicum) breeders have observed that plants with uniform green-shouldered fruit are less prone to yellow shoulder (YS) than are plants with (dark) green-shouldered tomatoes and thus have selected for tomato cultivars with uniform green-shouldered fruit. However, a recent publication reported that a cultivar with green-shouldered fruit had significantly higher soluble solids content (SSC) than an isogenic cultivar with uniform green-shouldered fruit and postulated that selection of uniform green shoulder has negatively affected tomato flavor and processing quality. Lines with dark green (u+), uniform green (u), uniform gray-green (ug), apple green (uAg), medium green, and pale green (uPg) immature fruit colors were crossed in all combinations to produce F1 plants that were self-pollinated to produce F2 seed. Parents, F1, and F2s were planted in the field in completely randomized block designs over two seasons. Plants were visually phenotyped for immature fruit color, and fruit from each plant were selected to measure shoulder and base color with a colorimeter. Ripening fruit were harvested to measure the incidence of YS, and SSC was measured on ripe fruit from each plant with a refractometer. In the spring season, fruit from F2 plants with green-shouldered fruit had significantly higher YS incidence than all phenotypes with uniform fruit colors. In the fall, phenotypes with medium-green shoulders were also tested, and these had greater YS than all other phenotypes except green shoulder. YS incidence for green shoulder was not significantly greater than that in the other phenotypes. Fla. 7956, the apple green parent, had 0% YS and appeared to be resistant. Higher SSC was observed in the spring season than in the fall season. However, in both seasons, when comparisons were made between phenotypes that segregated in the F2s, the SSC of green-shouldered phenotypes was not significantly higher than that of other phenotypes. Plants with apple green fruit tended to be higher in SSC in the fall, but this may relate to the dark green foliage of apple green plants and not just the fruit color. A hypothesis that stress may relate to reported SSC increases because of u+ is discussed.


2021 ◽  
Author(s):  
Lang Wu ◽  
Haoran Wang ◽  
Sujun Liu ◽  
Mengmeng Liu ◽  
Jinkui Liu ◽  
...  

Abstract In pepper (Capsicum annuum L.), the common colors of immature fruits are yellowish white, milky yellow, green, purple, and purplish black. Some genes related to these colors have been cloned, but only those related to dark green, white, and purple immature fruits; few studies have investigated light-green immature fruits. Here, we performed a genetic study using light-green (17C827) and green (17C658) immature fruits. We found that the light-green color of immature fruits were controlled by a single locus-dominant genetic trait compared with the green color of immature fruits. We also performed a genome-wide association study and bulked segregant analysis of immature-fruit color and mapped the LG locus to a 35.07 kbp region on chromosome 10. Only one gene, Capana10g001710, was found in this region. A G-A substitution occurred at the 313th base of the Capana10g001710 coding sequence in 17C827, resulting in the α-helix of its encoded PP2C35 protein to turn into a β-fold. The expression of Capana10g001710 (termed CaPP2C35) in 17C827 was significantly higher than in 17C658. Silencing of CaPP2C35 in 17C827 resulted in an increase in chlorophyll content in the exocarp and the appearance of green stripes on the surface of the fruit. These results indicate that CaPP2C35 may be involved in the formation of light-green immature fruits by regulating the accumulation of chlorophyll content in the exocarp. Thus, this research lays the foundation for further studies and genetic improvement of immature-fruit color in pepper.


2014 ◽  
Vol 127 (10) ◽  
pp. 2139-2148 ◽  
Author(s):  
Arnon Brand ◽  
Yelena Borovsky ◽  
Theresa Hill ◽  
Khalis Afnan Abdul Rahman ◽  
Aharon Bellalou ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Michael Abrouk ◽  
Naveenkumar Athiyannan ◽  
Thomas Müller ◽  
Yveline Pailles ◽  
Christoph Stritt ◽  
...  

AbstractThe cloning of agriculturally important genes is often complicated by haplotype variation across crop cultivars. Access to pan-genome information greatly facilitates the assessment of structural variations and rapid candidate gene identification. Here, we identified the red glume 1 (Rg-B1) gene using association genetics and haplotype analyses in ten reference grade wheat genomes. Glume color is an important trait to characterize wheat cultivars. Red glumes are frequent among Central European spelt, a dominant wheat subspecies in Europe before the 20th century. We used genotyping-by-sequencing to characterize a global diversity panel of 267 spelt accessions, which provided evidence for two independent introductions of spelt into Europe. A single region at the Rg-B1 locus on chromosome 1BS was associated with glume color in the diversity panel. Haplotype comparisons across ten high-quality wheat genomes revealed a MYB transcription factor as candidate gene. We found extensive haplotype variation across the ten cultivars, with a particular group of MYB alleles that was conserved in red glume wheat cultivars. Genetic mapping and transient infiltration experiments allowed us to validate this particular MYB transcription factor variants. Our study demonstrates the value of multiple high-quality genomes to rapidly resolve copy number and haplotype variations in regions controlling agriculturally important traits.


2000 ◽  
Vol 11 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Irma S. Lantinga-van Leeuwen ◽  
Jan A. Mol ◽  
Hans S. Kooistra ◽  
Ad Rijnberk ◽  
Matthew Breen ◽  
...  

Development ◽  
2001 ◽  
Vol 128 (2) ◽  
pp. 287-297 ◽  
Author(s):  
A. Beermann ◽  
D.G. Jay ◽  
R.W. Beeman ◽  
M. Hulskamp ◽  
D. Tautz ◽  
...  

Insects bear a stereotyped set of limbs, or ventral body appendages. In the highly derived dipteran Drosophila melanogaster, the homeodomain transcription factor encoded by the Distal-less (Dll) gene plays a major role in establishing distal limb structures. We have isolated the Dll orthologue (TcDll) from the beetle Tribolium castaneum, which, unlike Drosophila, develops well-formed limbs during embryogenesis. TcDll is initially expressed at the sites of limb primordia formation in the young embryo and subsequently in the distal region of developing legs, antennae and mouthparts except the mandibles. Mutations in the Short antennae (Sa) gene of Tribolium delete distal limb structures, closely resembling the Dll phenotype in Drosophila. TcDll expression is severely reduced or absent in strong Sa alleles. Genetic mapping and molecular analysis of Sa alleles also support the conclusion that TcDll corresponds to the Sa gene. Our data indicate functional conservation of the Dll gene in evolutionarily distant insect species. Implications for evolutionary changes in limb development are discussed.


Sign in / Sign up

Export Citation Format

Share Document