scholarly journals CFR Octane Rating Unit Engine and Dacia Single Cylinder SI Engine with Classical Spark Plug and Laser Ignition: Comparative Findings

2019 ◽  
Vol 2 (2) ◽  
pp. 39-42
Author(s):  
Bogdan George Done ◽  
◽  
Laszlo Barothi ◽  
Ion Copae ◽  
◽  
...  
2019 ◽  
Vol 112 ◽  
pp. 01009
Author(s):  
Bogdan George Done ◽  
Ion Copae

At this time, the severe legislation regarding the level limits of the waste and exhaust gases released by thermal engines and also the necessity of engines efficiency improvement boost the engine research domain to bring in front the use of new technologies that can be used to control the in-cylinder combustion process. Now, the new technologies is represented by LASER spark plug systems which can be successfully used at petrol engines. LASER spark plug technology can have many advantages for engine operation control, an ignition system that could provide improved combustion is the one using plasma generation and a Q-switched LASER that results in pulses with high MW power. The LASER spark plug device used in the current research was a LASER medium Nd:YAG/Cr4+:YAG ceramic structure made up of a 8.0-mm long, 1.0-at.% Nd:YAG ceramic, optically-bonded to a Cr4+:YAG c. It was developed and constructed similar to classical spark plug and could be assembled on a CFR Octane Rating Unit Engine as well as on a Dacia Single Cylinder SI Engine which led to several results among which: influences on in-cylinder pressure, combustion and pollutant emissions.


2020 ◽  
Vol 5 (2) ◽  
pp. 114
Author(s):  
Gatot Setyono

<p class="TTPAbstract">Hydroxy Gas (HHO) has been identified as an efficient alternative energy source. HHO is considered an alternative fuel. It can be applied alone or mixed with other kind of fuels in different ratios. In this analysis, the composition of HHO-ethanol was mixed in different variations. Ethanol-HHO was chosen because of its high-octane rating yet low exhaust emissions, and ease of obtaining from engine products. It has been applied on fuel prepared by mixing it with gasoline in various ratios (E30-HHO, E40-HHO, and E50-HHO). The ethanol-HHO mixture has been used in a single-cylinder 4-stroke spark machine for performance, by varying speed of engine from 4000 to 9000 RPM and by applying a platinum spark plug electrode type. In experiments, engine power, average effective pressure (MEP), specific fuel consumption (SFC), and thermal efficiency have been analyzed. The analysis of combustion is accomplished by taking a pressure cycle in the chamber, monitoring the automatic control of engine control unit (ECU) and ensuring utilization in the same parameters of the various fuels tested, in addition to the fuel injection time, which increases with increasing ethanol percentage. Optimal power, MEP and thermal efficiency values are obtained with ethanol-gasoline (E50-HHO) mixture which is operated at 7200 rpm, an increase of about 5% compared to gasoline. Significant reduction in SFC was observed using HHO-ethanol mixture, reduced by about 6% compared to gasoline.</p>


Author(s):  
M. Z. Haq ◽  
M. R. Mohiuddin

The paper presents a thermodynamic analysis of a single cylinder four-stroke spark-ignition (SI) engine fuelled by four fuels namely iso-octane, methane, methanol and hydrogen. In SI engines, due to phenomena like ignition delay and finite flame speed manifested by the fuels, the heat addition process is not instantaneous, and hence ‘Weibe function’ is used to address the realistic heat release scenario of the engine. Empirical correlations are used to predict the heat loss from the engine cylinder. Physical states and chemical properties of gaseous species present inside the cylinder are determined using first and second law of thermodynamics, chemical kinetics, JANAF thermodynamic data-base and NASA polynomials. The model is implemented in FORTRAN 95 using standard numerical routines and some simulation results are validated against data available in literature. The second law of thermodynamics is applied to estimate the change of exergy i.e. the work potential or quality of the in-cylinder mixture undergoing various phases to complete the cycle. Results indicate that, around 4 to 24% of exergy initially possessed by the in-cylinder mixture is reduced during combustion and about 26 to 42% is left unused and exhausted to the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document