scholarly journals The Non-Normal Subgroup Graph of Some Dihedral Groups

2020 ◽  
pp. 1-7
Author(s):  
Nabilah Fikriah Rahin ◽  
Nor Haniza Sarmin ◽  
Sheila Ilangovan

Let G be a finite groupand H is a subgroup of G. The subgroup graph of H in G is defined as a directed simple graph with vertex set G and two distinct elements x and y are adjacent if and only if xy∈H. In this paper, the work on subgroup graph is extended by defining a new graph called the non-normal subgroup graph. The subgroup graph is determined for some dihedral groupsof order 2n when the subgroup is non-normal. Keywords: subgroup graph; non-normal subgroup; dihedral group

2020 ◽  
Vol 12 (04) ◽  
pp. 2050051
Author(s):  
Majid Arezoomand ◽  
Afshin Behmaram ◽  
Mohsen Ghasemi ◽  
Parivash Raeighasht

For a group [Formula: see text] and a subset [Formula: see text] of [Formula: see text] the bi-Cayley graph BCay[Formula: see text] of [Formula: see text] with respect to [Formula: see text] is the bipartite graph with vertex set [Formula: see text] and edge set [Formula: see text]. A bi-Cayley graph BCay[Formula: see text] is called a BCI-graph if for any bi-Cayley graph BCay[Formula: see text], [Formula: see text] implies that [Formula: see text] for some [Formula: see text] and [Formula: see text]. A group [Formula: see text] is called a [Formula: see text]-BCI-group if all bi-Cayley graphs of [Formula: see text] with valency at most [Formula: see text] are BCI-graphs. In this paper, we characterize the [Formula: see text]-BCI dihedral groups for [Formula: see text]. Also, we show that the dihedral group [Formula: see text] ([Formula: see text] is prime) is a [Formula: see text]-BCI-group.


2019 ◽  
Vol 17 (1) ◽  
pp. 1303-1309 ◽  
Author(s):  
Ghulam Abbas ◽  
Usman Ali ◽  
Mobeen Munir ◽  
Syed Ahtsham Ul Haq Bokhary ◽  
Shin Min Kang

Abstract Classical applications of resolving sets and metric dimension can be observed in robot navigation, networking and pharmacy. In the present article, a formula for computing the metric dimension of a simple graph wihtout singleton twins is given. A sufficient condition for the graph to have the exchange property for resolving sets is found. Consequently, every minimal resolving set in the graph forms a basis for a matriod in the context of independence defined by Boutin [Determining sets, resolving set and the exchange property, Graphs Combin., 2009, 25, 789-806]. Also, a new way to define a matroid on finite ground is deduced. It is proved that the matroid is strongly base orderable and hence satisfies the conjecture of White [An unique exchange property for bases, Linear Algebra Appl., 1980, 31, 81-91]. As an application, it is shown that the power graphs of some finite groups can define a matroid. Moreover, we also compute the metric dimension of the power graphs of dihedral groups.


Author(s):  
SH. RAHIMI ◽  
Z. AKHLAGHI

Abstract Given a finite group G with a normal subgroup N, the simple graph $\Gamma _{\textit {G}}( \textit {N} )$ is a graph whose vertices are of the form $|x^G|$ , where $x\in {N\setminus {Z(G)}}$ and $x^G$ is the G-conjugacy class of N containing the element x. Two vertices $|x^G|$ and $|y^G|$ are adjacent if they are not coprime. We prove that, if $\Gamma _G(N)$ is a connected incomplete regular graph, then $N= P \times {A}$ where P is a p-group, for some prime p, $A\leq {Z(G)}$ and $\textbf {Z}(N)\not = N\cap \textbf {Z}(G)$ .


Author(s):  
Qun Liu ◽  
Jiabao Liu

Let G[F,Vk, Huv] be the graph with k pockets, where F is a simple graph of order n ≥ 1,Vk= {v1,v2,··· ,vk} is a subset of the vertex set of F and Hvis a simple graph of order m ≥ 2,v is a specified vertex of Hv. Also let G[F,Ek, Huv] be the graph with k edge pockets, where F is a simple graph of order n ≥ 2, Ek= {e1,e2,···ek} is a subset of the edge set of F and Huvis a simple graph of order m ≥ 3, uv is a specified edge of Huvsuch that Huv− u is isomorphic to Huv− v. In this paper, we derive closed-form formulas for resistance distance and Kirchhoff index of G[F,Vk, Hv] and G[F,Ek, Huv] in terms of the resistance distance and Kirchhoff index F, Hv and F, Huv, respectively.


MATEMATIKA ◽  
2019 ◽  
Vol 35 (1) ◽  
pp. 59-65
Author(s):  
Rabiha Mahmoud ◽  
Amira Fadina Ahmad Fadzil ◽  
Nor Haniza Sarmin ◽  
Ahmad Erfanian

Let G be a dihedral group and its conjugacy class graph. The Laplacian energy of the graph, is defined as the sum of the absolute values of the difference between the Laplacian eigenvalues and the ratio of twice the edges number divided by the vertices number. In this research, the Laplacian matrices of the conjugacy class graph of some dihedral groups, generalized quaternion groups, quasidihedral groups and their eigenvalues are first computed. Then, the Laplacian energy of the graphs are determined.


Author(s):  
Kijung Kim

Let $G$ be a finite simple graph with vertex set $V(G)$ and edge set $E(G)$. A function $f : V(G) \rightarrow \mathcal{P}(\{1, 2, \dotsc, k\})$ is a \textit{$k$-rainbow dominating function} on $G$ if for each vertex $v \in V(G)$ for which $f(v)= \emptyset$, it holds that $\bigcup_{u \in N(v)}f(u) = \{1, 2, \dotsc, k\}$. The weight of a $k$-rainbow dominating function is the value $\sum_{v \in V(G)}|f(v)|$. The \textit{$k$-rainbow domination number} $\gamma_{rk}(G)$ is the minimum weight of a $k$-rainbow dominating function on $G$. In this paper, we initiate the study of $k$-rainbow domination numbers in middle graphs. We define the concept of a middle $k$-rainbow dominating function, obtain some bounds related to it and determine the middle $3$-rainbow domination number of some classes of graphs. We also provide upper and lower bounds for the middle $3$-rainbow domination number of trees in terms of the matching number. In addition, we determine the $3$-rainbow domatic number for the middle graph of paths and cycles.


2017 ◽  
Vol 1 (2) ◽  
Author(s):  
Abdussakir Abdussakir

Study on the energy of a graph becomes a topic of great interest. One is the detour energy which is the sum of the absolute values of all eigenvalue of the detour matrix of a graph. Graphs obtained from a group also became a study that attracted the attention of many researchers. This article discusses the subgroup graph for several normal subgroups of dihedral groups. The discussion focused on the detour energy of complement of subgroup graph of dihedral group


Author(s):  
Nurdin Hinding ◽  
Hye Kyung Kim ◽  
Nurtiti Sunusi ◽  
Riskawati Mise

For a simple graph G with a vertex set V G and an edge set E G , a labeling f : V G ∪ ​ E G ⟶ 1,2 , ⋯ , k is called a vertex irregular total k − labeling of G if for any two different vertices x and y in V G we have w t x ≠ w t y where w t x = f x + ∑ u ∈ V G f x u . The smallest positive integer k such that G has a vertex irregular total k − labeling is called the total vertex irregularity strength of G , denoted by tvs G . The lower bound of tvs G for any graph G have been found by Baca et. al. In this paper, we determined the exact value of the total vertex irregularity strength of the hexagonal cluster graph on n cluster for n ≥ 2 . Moreover, we show that the total vertex irregularity strength of the hexagonal cluster graph on n cluster is 3 n 2 + 1 / 2 .


2017 ◽  
Vol 33 (2) ◽  
pp. 247-256
Author(s):  
JOSEF SLAPAL ◽  

In an undirected simple graph, we define connectedness induced by a set of walks of the same lengths. We show that the connectedness is preserved by the strong product of graphs with walk sets. This result is used to introduce a graph on the vertex set Z2 with sets of walks that is obtained as the strong product of a pair of copies of a graph on the vertex set Z with certain walk sets. It is proved that each of the walk sets in the graph introduced induces connectedness on Z2 that satisfies a digital analogue of the Jordan curve theorem. It follows that the graph with any of the walk sets provides a convenient structure on the digital plane Z2 for the study of digital images.


2020 ◽  
Vol 12 (06) ◽  
pp. 2050083
Author(s):  
I. Tarawneh ◽  
R. Hasni ◽  
A. Ahmad ◽  
G. C. Lau ◽  
S. M. Lee

Let [Formula: see text] be a simple graph with vertex set [Formula: see text] and edge set [Formula: see text], respectively. An edge irregular [Formula: see text]-labeling of [Formula: see text] is a labeling of [Formula: see text] with labels from the set [Formula: see text] in such a way that for any two different edges [Formula: see text] and [Formula: see text], their weights [Formula: see text] and [Formula: see text] are distinct. The weight of an edge [Formula: see text] in [Formula: see text] is the sum of the labels of the end vertices [Formula: see text] and [Formula: see text]. The minimum [Formula: see text] for which the graph [Formula: see text] has an edge irregular [Formula: see text]-labeling is called the edge irregularity strength of [Formula: see text], denoted by [Formula: see text]. In this paper, we determine the exact value of edge irregularity strength of corona product of graphs with cycle.


Sign in / Sign up

Export Citation Format

Share Document