scholarly journals Crecimiento y captura de carbono del árbol majestuoso "Don Cástulo" (Quercus cantanea Née) en el bosque La Primavera en el periodo 2009 - 2021

e-CUCBA ◽  
2021 ◽  
Vol 8 (16) ◽  
pp. 36-38
Author(s):  
Arturo Balderas Torres ◽  

In the present note, the increase in diameter at breast height (DBH, at 1.30 m height) of the largest oak documented in the forest inventory established in 2009 in the La Primavera Forest (BLP) is reported, calculate the increase in carbon sequestration that this implies and mention the implications for mitigating climate change.

2020 ◽  
Vol 29 (3) ◽  
pp. e019
Author(s):  
Lucio Di Cosmo ◽  
Diego Giuliani ◽  
Maria Michela Dickson ◽  
Patrizia Gasparini

Aims of the study. Assessment of growth is essential to support sustainability of forest management and forest policies. The objective of the study was to develop a species-specific model to predict the annual increment of tree basal area through variables recorded by forest surveys, to assess forest growth directly or in the context of more complex forest growth and yield simulation models.Area of the study. Italy.Material and methods. Data on 34638 trees of 31 different forest species collected in 5162 plots of the Italian National Forest Inventory were used; the data were recorded between 2004 and 2006. To account for the hierarchical structure of the data due to trees nested within plots, a two-level mixed-effects modelling approach was used.Main results. The final result is an individual-tree linear mixed-effects model with species as dummy variables. Tree size is the main predictor, but the model also integrates geographical and topographic predictors and includes competition. The model fitting is good (McFadden’s Pseudo-R2 0.536), and the variance of the random effect at the plot level is significant (intra-class correlation coefficient 0.512). Compared to the ordinary least squares regression, the mixed-effects model allowed reducing the mean absolute error of estimates in the plots by 64.5% in average.Research highlights. A single tree-level model for predicting the basal area increment of different species was developed using forest inventory data. The data used for the modelling cover 31 species and a great variety of growing conditions, and the model seems suitable to be applied in the wider context of Southern Europe.   Keywords: Tree growth; forest growth modelling; forest inventory; hierarchical data structure; Italy.Abbreviations used: BA - basal area; BAI – five-year periodic basal area increment; BALT - basal area of trees larger than the subject tree; BASPratio - ratio of subject tree species basal area to stand basal area; BASTratio - ratio of subject tree basal area to stand basal area; CRATIO - crown ratio; DBH – diameter at breast height ; DBH0– diameter at breast height corresponding to five years before the survey year; DBHt– diameter at breast height measured in the survey year; DI5 - five-year, inside bark, DBH increment; HDOM - dominant height; LULUCF - Land Use, Land Use Changes and Forestry; ME - mean error; MAE - mean absolute error; MPD - mean percent deviation; MPSE - mean percent standard error; NFI(s) - National Forest Inventory/ies; OLS - ordinary least squares regression; RMSE - root mean squared error; UNFCCC - United Nation Framework Convention on Climate Change.


2021 ◽  
pp. 69-82

Improvements in above ground biomass estimation can help account for changes in carbon stock in forest areas that may potentially participate in the clean development mechanism. The main objective of this study was to assess potential of some selected forest variables for modeling carbon sequestration for Combretum hartmannianum, Terminalia brownii, and Lanea fruitcosa. A total of 10 sample trees for Lanea fruitcosa and 8 sample trees for each of the other two species were selected for biomass and carbon determination were selected from El Nour Natural Forest Reserve of the Blue Nile State, Sudan. Data of diameter at breast height, total tree height, tree crown diameter, crown height, and upper stem diameters were measured. Then sample trees were felled and sectioned to their components and weighed. Subsamples were selected from each component for oven drying at 105 ˚C. Finally, allometric models were developed and the aboveground dry weight (dwt) and carbon sequestered per hector were calculated. The results presented biomass equations, biomass expansion factor and wood density that developed for the trees. In case of inventoried wood volume, corrections for biomass expansion factor and wood density value were done, and new values are suggested for use to convert wood volume to biomass estimates. The results also, indicate that diameter at breast height, crown diameter and tree height are good predictors for estimation of tree dwt and carbon stock. The developed allometric equations in this study gave better estimation of dwt than default value. The average carbon stock was found to be 22.57 t/ha.


2018 ◽  
Vol 9 (5) ◽  
pp. 264-271
Author(s):  
Thi Thu Huong Dang ◽  
Huu Thu Do ◽  
Minh Quang Trinh ◽  
Hung Manh Nguyen ◽  
Thi Tuyet Xuan Bui ◽  
...  

Stem diameter at breast height (D1.3m) and tree height (H) are commonly used measures of tree growth. Based on correlation analysis between biomass of stem, branches and leaves and stem diameter and height of tree we can identify allometric equation for predicting biomass and carbon sequestration of the vegetation. This study was carried out in the natural forests of Me Linh Station for biodiversity to develop allometric equation between biomass and diameter at breast height and height of tree. The study results indicated that twenty tree species dominate in natural forests in Me Linh Station for Biodiversity and they were selected for sampling. Through the 80 established linear equation models for above and below –ground biomass (AGB and BGB), we found that the biomass of tree species in Me Linh Station for Biodiversity were closely correlated with the diameter factor (R>0.902) and not clearly correlated with the height (correlation coefficient = 0.5498, R2< 0.549). Four regression equations were established, including: Pstem = 25.3051*(D1.3m)0.4627 (R2 : 9.661); Pbranch = 12.1043*(D1.3m)0.5416 (R2 : 9.8); Pleaves = 9.446*(D1.3m)0.5976 (R2 : 0.9363); P total biomass of forest = 25.882*D1.725 with R2: 0.8561) for estimating biomass and carbon sequestration of natural forest at the research site. Đường kính ngang ngực (D1.3m) và chiều cao (H) cây là hai nhân tố thường được dùng để đánh giá sự phát triển của cây gỗ. Việc xây dựng các phương trình tương quan giữa sinh khối (SK) thân, cành, lá, sinh khối tầng cây gỗ, sinh khối của quần xã thực vật với đường kính và chiều cao cây góp phần rất lớn trong dự báo sinh khối và khả năng hấp thụ khí carbon của thảm thực vật. Kết quả nghiên cứu cho thấy 20 loài cây gỗ chiếm ưu thế trong rừng tự nhiên và chúng được chọn để thu mẫu. Mối tương quan giữa sinh khối với 2 nhân tố điều tra rừng là đường kính ngang ngực và chiều cao cây đã đươc kiểm tra thông qua 80 phương trình tương quan. Nhìn chung, sinh khối có tương quan chặt chẽ với nhân tố đường kính (hệ số tương quan R > 0,902), và không tương quan rõ với nhân tố chiều cao (R < 0,5498). Bốn phương trình tính sinh khối cho thảm rừng tại khu vực nghiên cứu đã được thiết lập: SKthân = 25,3051*(D1,3m)0,4627 (R2: 9,661); SKcành: 12,1043*(D1,3m)0,5416 (R2: 9,8); SKlá: 9,446*(D1,3m)0,5976 (R2: 0,9363) và SKtổng = 25,882*D1,725 with R2: 0,8561).


2021 ◽  
Vol 13 (8) ◽  
pp. 4167
Author(s):  
David Kombi Kaviriri ◽  
Huan-Zhen Liu ◽  
Xi-Yang Zhao

In order to determine suitable traits for selecting high-wood-yield Korean pine materials, eleven morphological characteristics (tree height, basal diameter, diameter at breast height, diameter at 3 meter height, stem straightness degree, crown breadth, crown height, branch angle, branch number per node, bark thickness, and stem volume) were investigated in a 38-year-old Korean pine clonal trial at Naozhi orchard. A statistical approach combining variance and regression analysis was used to extract appropriate traits for selecting elite clones. Results of variance analysis showed significant difference in variance sources in most of the traits, except for the stem straightness degree, which had a p-value of 0.94. Moderate to high coefficients of variation and clonal repeatability ranged from 10.73% to 35.45% and from 0.06% to 0.78%, respectively. Strong significant correlations on the phenotypic and genotypic levels were observed between the straightness traits and tree volume, but crown breadth was weakly correlated to the volume. Four principal components retaining up to 80% of the total variation were extracted, and stem volume, basal diameter, diameter at breast height, diameter at 3 meter height, tree height, and crown height displayed high correlation to these components (r ranged from 0.76 to 0.98). Based on the Type III sum of squares, tree height, diameter at breast height, and branch number showed significant information to explain the clonal variability based on stem volume. Using the extracted characteristics as the selection index, six clones (PK105, PK59, PK104, PK36, PK28, and K101) displayed the highest Qi values, with a selection rate of 5% corresponding to the genetic gain of 42.96% in stem volume. This study provides beneficial information for the selection of multiple traits for genetically improved genotypes of Korean pine.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Matieu Henry ◽  
Zaheer Iqbal ◽  
Kristofer Johnson ◽  
Mariam Akhter ◽  
Liam Costello ◽  
...  

Abstract Background National forest inventory and forest monitoring systems are more important than ever considering continued global degradation of trees and forests. These systems are especially important in a country like Bangladesh, which is characterised by a large population density, climate change vulnerability and dependence on natural resources. With the aim of supporting the Government’s actions towards sustainable forest management through reliable information, the Bangladesh Forest Inventory (BFI) was designed and implemented through three components: biophysical inventory, socio-economic survey and remote sensing-based land cover mapping. This article documents the approach undertaken by the Forest Department under the Ministry of Environment, Forests and Climate Change to establish the BFI as a multipurpose, efficient, accurate and replicable national forest assessment. The design, operationalization and some key results of the process are presented. Methods The BFI takes advantage of the latest and most well-accepted technological and methodological approaches. Importantly, it was designed through a collaborative process which drew from the experience and knowledge of multiple national and international entities. Overall, 1781 field plots were visited, 6400 households were surveyed, and a national land cover map for the year 2015 was produced. Innovative technological enhancements include a semi-automated segmentation approach for developing the wall-to-wall land cover map, an object-based national land characterisation system, consistent estimates between sample-based and mapped land cover areas, use of mobile apps for tree species identification and data collection, and use of differential global positioning system for referencing plot centres. Results Seven criteria, and multiple associated indicators, were developed for monitoring progress towards sustainable forest management goals, informing management decisions, and national and international reporting needs. A wide range of biophysical and socioeconomic data were collected, and in some cases integrated, for estimating the indicators. Conclusions The BFI is a new information source tool for helping guide Bangladesh towards a sustainable future. Reliable information on the status of tree and forest resources, as well as land use, empowers evidence-based decision making across multiple stakeholders and at different levels for protecting natural resources. The integrated socio-economic data collected provides information about the interactions between people and their tree and forest resources, and the valuation of ecosystem services. The BFI is designed to be a permanent assessment of these resources, and future data collection will enable monitoring of trends against the current baseline. However, additional institutional support as well as continuation of collaboration among national partners is crucial for sustaining the BFI process in future.


2021 ◽  
Vol 232 (5) ◽  
Author(s):  
Dipankar Deb ◽  
Mary Jamatia ◽  
Jaba Debbarma ◽  
Jitendra Ahirwal ◽  
Sourabh Deb ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 380
Author(s):  
Karol Bronisz ◽  
Szymon Bijak ◽  
Rafał Wojtan ◽  
Robert Tomusiak ◽  
Agnieszka Bronisz ◽  
...  

Information about tree biomass is important not only in the assessment of wood resources but also in the process of preparing forest management plans, as well as for estimating carbon stocks and their flow in forest ecosystems. The study aimed to develop empirical models for determining the dry mass of the aboveground parts of black locust trees and their components (stem, branches, and leaves). The research was carried out based on data collected in 13 stands (a total of 38 sample trees) of black locust located in western Poland. The model system was developed based on multivariate mixed-effect models using two approaches. In the first approach, biomass components and tree height were defined as dependent variables, while diameter at breast height was used as an independent variable. In the second approach, biomass components and diameter at breast height were dependent variables and tree height was defined as the independent variable. Both approaches enable the fixed-effect and cross-model random-effect prediction of aboveground dry biomass components of black locust. Cross-model random-effect prediction was obtained using additional measurements of two extreme trees, defined as trees characterized by the smallest and largest diameter at breast height in sample plot. This type of prediction is more precise (root mean square error for stem dry biomass for both approaches equals 77.603 and 188.139, respectively) than that of fixed-effects prediction (root mean square error for stem dry biomass for both approaches equals 238.716 and 206.933, respectively). The use of height as an independent variable increases the possibility of the practical application of the proposed solutions using remote data sources.


Sign in / Sign up

Export Citation Format

Share Document