scholarly journals Finite element analysis of a single conductor with a Stockbridge damper under Aeolian vibration

Author(s):  
Oumar Barry

A finite element model is developed to predict the vibrational response of a single conductor with a Stockbride damper. The mathematical model accounts for the two-way coupling between the conductor and the damper. A two-part numerical analysis using MATLAB is presented to simulate the response of the system. The first part deals with the vibration of the conductor without a damper. The results indicate that longer span conductors without dampers are susceptible to fatigue failure. In the second part, a damper is attached to the conductor and the effects of the excitation frequency, the damper mass, and the damper location are investigated. This investigation shows that the presence of a properly positioned damper on the conductor significantly reduces fatigue failure.

2021 ◽  
Author(s):  
Oumar Barry

A finite element model is developed to predict the vibrational response of a single conductor with a Stockbride damper. The mathematical model accounts for the two-way coupling between the conductor and the damper. A two-part numerical analysis using MATLAB is presented to simulate the response of the system. The first part deals with the vibration of the conductor without a damper. The results indicate that longer span conductors without dampers are susceptible to fatigue failure. In the second part, a damper is attached to the conductor and the effects of the excitation frequency, the damper mass, and the damper location are investigated. This investigation shows that the presence of a properly positioned damper on the conductor significantly reduces fatigue failure.


Author(s):  
Oumar Barry ◽  
Donatus CD Oguamanam ◽  
Der Chyan Lin

The planar vibrational response of a single conductor with an attached Stockbridge damper is investigated. The mathematical model accounts for the two-way coupling between the conductor and the damper, the flexural rigidity of both the damper and the conductor, and the mass of the two counterweights of the damper. Hence, the dynamic behaviors of the damper and conductor are simultaneously assessed. Both free and forced vibration analyses are implemented via the use of a finite element code developed in MATLAB. The results of the force vibration analyses show that the effectiveness of Stockbridge dampers depends on their location, mass, and excitation frequency.


2010 ◽  
Vol 145 ◽  
pp. 317-320
Author(s):  
Chun Ming Zhang ◽  
Run Yuan Hao

This text is on the basis of the investigation of the 42MN flatting mill’s higher beam, establishing the flatting mill’s higher beam’s finite element model and the mathematical model which has optimum structure. According to the results of their structure finite element analysis, weaved the relevant procedures and optimized them, obtained ideal structural parameters, this text provide better ideas and ways for the structural design of the flatting mill’s higher beam.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Gaoxin Wang ◽  
Youliang Ding

For the friction-type high-strength bolted joint, the bolt fracture can cause redistribution of interface friction, which will seriously endanger the connection safety of structural members. However, current study scarcely focuses on the redistribution of interface friction after bolt fracture. Therefore, this paper will specifically carry out finite element analysis on the redistribution of interface friction caused by fractured bolts. Firstly, the refined finite element model of friction-type high-strength bolted joint is used to investigate the variation of interface friction with uniform temperature and the distribution of interface friction in different areas. Furthermore, stochastic finite element method is introduced to explain how the quantity and location of fractured bolts influence the redistribution of interface friction. Finally, the mathematical model of friction redistribution is built to describe the redistribution of temperature-induced interface friction in the friction-type high-strength bolted joint after bolt fracture. After validation, the mathematical model can well describe the redistribution of interface friction caused by fractured bolts.


2012 ◽  
Vol 472-475 ◽  
pp. 1907-1910
Author(s):  
Yi Wang ◽  
Xin Jian Ma

Numerical simulation of the secondary cooling is applied to the design of continuous casting. The mathematical model for solidification process of the strand under air-mist was established and calculated with the finite element model. The model is used to calculate the feasible operating range of the continuous casting machines. The dynamic secondary cooling system has been analyzed with consideration of the thermo mechanical principles and numerical model. The adequacy of the model has been confirmed with experimental results.


2011 ◽  
Vol 697-698 ◽  
pp. 97-101
Author(s):  
Chao Hao Wang ◽  
Yong Liang Chen ◽  
Jin Ping Pang ◽  
Da Wei Zhang ◽  
G.X. Pan

Dynamic analysis and modal test were conducted on a vertical grinding machine. The mathematical model of joint surface parameter identification between the bed and the column was established in CAD/CAE integrated environment. Based on the results of dynamic analysis and modal test, the parameters of joint surface were identified and the finite element model was accurately created. Then, the weak bodies of the original machine were improved. According to the finite element analysis of the improved machine, the performances of the new machine were better than the original machine.


2011 ◽  
Vol 121-126 ◽  
pp. 2532-2536
Author(s):  
Jia Hong Zheng ◽  
Min Li

The model of the spindle was made while the related characteristics and parameters were analysising,and then it was inducted in ANSYS finite element analysis software. Through carrying the constraint on the finite element model, the spindle was completed to realize the finite element analysis. At last, the model was inducted in MATLAB to establish the optimal model, through the mathematical model ,it was realised to complete optimization analysis.


2011 ◽  
Vol 314-316 ◽  
pp. 675-681
Author(s):  
Yi Liu ◽  
Ji Shun Li

The stress distribution of the high - pressure grinding roller is an important index of the grinding mill design. A simulation model of high - pressure grinding roller is created by means of finite element method (FEM), utilizing the FEM software ANSYS. At first, the paper calculated the pressure of the high - pressure grinding roller by the grinding materiel mathematical model. Secondly, a physical model is set up material characteristics is defined and the areas are meshed, then the border conditions are established, finally loading and solving are made. The result of the FEM simulation indicated the mathematical model of the grinding materiel is rational.


Author(s):  
Matthew G. Dick ◽  
David S. McConnell ◽  
Hans C. Iwand

Screw spikes, also known as coach screws, are an advanced alternative to common cut spikes for track fastening. Despite their ability to secure tie plates with a clamp load and utilization of high strength steels, they are still susceptible to bending fatigue failure from lateral wheel loads. A novel method of measuring these bending loads on screw spikes was developed and implemented to characterize the load environment of the screw spikes. Results indicated that measured peak bending loads under lateral wheel loads reached as high as 10,000 lbs for individual spikes, while others carried no load whatsoever. A finite element model was developed to determine the tensile stress fields created by the measured bending loads. A good correlation was found between the FEA model predicted point of highest stress and the location of fracture. Through the testing and analysis it was determined that lateral wheel loads are not distributed evenly among the four screw spikes of a single tie plate. Instead, it was found that one spike carried nearly no load while the spike opposite of it carried more load. Using the finite element analysis it was determined that the spike exposed to the higher loading was subjected to tensile stresses above its endurance limit, which would eventually lead to a bending fatigue failure.


Author(s):  
Hao Zhu ◽  
Yumei Hu ◽  
Yangjun Pi ◽  
Weidong Zhu

The aim of this article is to investigate hysteretic damping characteristics of a typical tensioner used in engine accessory drive systems. An experiment device is developed to measure the friction coefficients of three contact pairs within the tensioner. Statistic results of test data show that the friction coefficient is linearly dependent on normal forces, and thus a linear function is used to describe it. An exact mathematical model and an accurate three-dimensional finite element model are proposed in this study to calculate the relationship of friction torque and rotation angle as well as the damping characteristics of the tensioner. The mathematical model and three-dimensional finite element model are verified through an experiment. Comparison indicates that both the mathematical and finite element model can accurately predict the working torque of the tensioner during operation process, while the finite element model has better accuracy in predicting the damping characteristics than the mathematical model.


Sign in / Sign up

Export Citation Format

Share Document