scholarly journals Synthesis of Classical and Non-Classical CMOS Transistor Fault Models Mapped to Gate-Level for Reconfigurable Hardware-Based Fault Injection

Author(s):  
Raha Abedi

One of the main goals of fault injection techniques is to evaluate the fault tolerance of a design. To have greater confidence in the fault tolerance of a system, an accurate fault model is essential. While more accurate than gate level, transistor level fault models cannot be synthesized into FPGA chips. Thus, transistor level faults must be mapped to the gate level to obtain both accuracy and synthesizability. Re-synthesizing a large system for fault injection is not cost effective when the number of faults and system complexity are high. Therefore, the system must be divided into partitions to reduce the re-synthesis time as faults are injected only into a portion of the system. However, the module-based partial reconfiguration complexity rises with an increase in the total number of partitions in the system. An unbalanced partitioning methodology is introduced to reduce the total number of partitions in a system while the size of the partitions where faults are to be injected remains small enough to achieve an acceptable re-synthesis time.

2021 ◽  
Author(s):  
Raha Abedi

One of the main goals of fault injection techniques is to evaluate the fault tolerance of a design. To have greater confidence in the fault tolerance of a system, an accurate fault model is essential. While more accurate than gate level, transistor level fault models cannot be synthesized into FPGA chips. Thus, transistor level faults must be mapped to the gate level to obtain both accuracy and synthesizability. Re-synthesizing a large system for fault injection is not cost effective when the number of faults and system complexity are high. Therefore, the system must be divided into partitions to reduce the re-synthesis time as faults are injected only into a portion of the system. However, the module-based partial reconfiguration complexity rises with an increase in the total number of partitions in the system. An unbalanced partitioning methodology is introduced to reduce the total number of partitions in a system while the size of the partitions where faults are to be injected remains small enough to achieve an acceptable re-synthesis time.


Author(s):  
J. Karlsson ◽  
P. Folkesson ◽  
J. Arlat ◽  
Y. Crouzet ◽  
G. Leber ◽  
...  

Author(s):  
Pierluigi Civera ◽  
Luca Macchiarulo ◽  
Maurizio Rebaudengo ◽  
Matteo Sonza Reorda ◽  
Massimo Violante

2019 ◽  
Vol 63 (5) ◽  
pp. 758-773
Author(s):  
Matthew Leeke

Abstract The application of machine learning to software fault injection data has been shown to be an effective approach for the generation of efficient error detection mechanisms (EDMs). However, such approaches to the design of EDMs have invariably adopted a fault model with a single-fault assumption, limiting the relevance of the detectors and their evaluation. Software containing more than a single fault is commonplace, with safety standards recognizing that critical failures are often the result of unlikely or unforeseen combinations of faults. This paper addresses this shortcoming, demonstrating that it is possible to generate efficient EDMs under simultaneous fault models. In particular, it is shown that (i) efficient EDMs can be designed using fault injection data collected under models accounting for the occurrence of simultaneous faults, (ii) exhaustive fault injection under a simultaneous bit flip model can yield improved EDM efficiency, (iii) exhaustive fault injection under a simultaneous bit flip model can be made non-exhaustive and (iv) EDMs can be relocated within a software system using program slicing, reducing the resource costs of experimentation to practicable levels without sacrificing EDM efficiency.


2019 ◽  
Author(s):  
Rodrigo Barbieri ◽  
Enrique dos Santos ◽  
Gustavo Maciel Dias Vieira

Fault-tolerant distributed systems offer high reliability because even if faults in their components occur, they do not exhibit erroneous behavior. Depending on the fault model adopted, hardware and software errors that do not result in a process crashing are usually not tolerated. To tolerate these rather common failures the usual solution is to adopt a stronger fault model, such as the arbitrary or Byzantine fault model. Algorithms created for this fault model, however, are considerably more complex and require more system resources than the ones developed for less strict fault models. One approach to reach a middle ground is the non-malicious arbitrary fault model. In this paper we describe how we incremented an implementation of active replication in the non-malicious fault model with a basic type of distributed validation, where a deviation from the expected algorithm behavior will make a process crash. We experimentally evaluate this implementation using a fault injection framework showing that it is feasible to extend the concept of non-malicious failures beyond hardware failures.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1179
Author(s):  
Jonatan Sánchez ◽  
Antonio da Silva ◽  
Pablo Parra ◽  
Óscar R. Polo ◽  
Agustín Martínez Hellín ◽  
...  

Multicore hardware platforms are being incorporated into spacecraft on-board systems to achieve faster and more efficient data processing. However, such systems lead to increased complexity in software development and represent a considerable challenge, especially concerning the runtime verification of fault-tolerance requirements. To address the ever-challenging verification of this kind of requirement, we introduce a LEON4 multicore virtual platform called LeonViP-MC. LeonViP-MC is an evolution of a previous development called Leon2ViP, carried out by the Space Research Group of the University of Alcalá (SRG-UAH), which has been successfully used in the development and testing of the flight software of the instrument control unit (ICU) of the energetic particle detector (EPD) on board the Solar Orbiter. This paper describes the LeonViP-MC architectural design decisions oriented towards fault-injection campaigns to verify software fault-tolerance mechanisms. To validate the simulator, we developed an ARINC653 communications channel that incorporates fault-tolerance mechanisms and is currently being used to develop a hypervisor level for the GR740 platform.


Author(s):  
Domenico Cotroneo ◽  
Antonio Pecchia ◽  
Roberto Pietrantuono ◽  
Stefano Russo

Service Oriented Computing relies on the integration of heterogeneous software technologies and infrastructures that provide developers with a common ground for composing services and producing applications flexibly. However, this approach eases software development but makes dependability a big challenge. Integrating such diverse software items raise issues that traditional testing is not able to exhaustively cope with. In this context, tolerating faults, rather than attempt to detect them solely by testing, is a more suitable solution. This paper proposes a method to support a tailored design of fault tolerance actions for the system being developed. This paper describes system failure behavior through an extensive fault injection campaign to figure out its criticalities and adopt the most appropriate countermeasures to tolerate operational faults. The proposed method is applied to two distinct SOC-enabling technologies. Results show how the achieved findings allow designers to understand the system failure behavior and plan fault tolerance.


Author(s):  
Johan Karlsson ◽  
Peter Folkesson ◽  
Jean Arlat ◽  
Yves Crouzet ◽  
Günther Leber

Sign in / Sign up

Export Citation Format

Share Document