scholarly journals Least Cost Analysis of Energy Efficiency Upgrades for Ontario Using Trnsys

2021 ◽  
Author(s):  
Amir Fereidouni Kondri

This report presents the methodology for determining least cost energy efficient upgrade solutions in new residential housing using brute force sequential search (BFSS) method for integration into the reference house to reduce energy consumption while minimizing the net present value (NPV) of life cycle costs. The results showed that, based on the life cycle cost analysis of 30 years, the optimal upgrades resulted in the average of 19.25% (case 1), 31% (case 2a), and 21% (case 2b) reduction in annual energy consumption. Economic conditions affect the sequencing of the upgrades. In this respect the preferred upgrades to be performed in order are; domestic hot water heating, above grade wall insulation, cooling systems, ceiling insulation, floor insulation, heat recovery ventilator, basement slab insulation and below grade wall insulation. When the gas commodity pricing becomes high, the more energy efficient upgrades for domestic hot water (DHW) get selected at a cost premium.

2021 ◽  
Author(s):  
Amir Fereidouni Kondri

This report presents the methodology for determining least cost energy efficient upgrade solutions in new residential housing using brute force sequential search (BFSS) method for integration into the reference house to reduce energy consumption while minimizing the net present value (NPV) of life cycle costs. The results showed that, based on the life cycle cost analysis of 30 years, the optimal upgrades resulted in the average of 19.25% (case 1), 31% (case 2a), and 21% (case 2b) reduction in annual energy consumption. Economic conditions affect the sequencing of the upgrades. In this respect the preferred upgrades to be performed in order are; domestic hot water heating, above grade wall insulation, cooling systems, ceiling insulation, floor insulation, heat recovery ventilator, basement slab insulation and below grade wall insulation. When the gas commodity pricing becomes high, the more energy efficient upgrades for domestic hot water (DHW) get selected at a cost premium.


2021 ◽  
Vol 11 (21) ◽  
pp. 10316
Author(s):  
Stojan Kravanja ◽  
Uroš Klanšek ◽  
Tomaž Žula

This paper presents a study showing the optimization of the mass, direct (self-manufacturing) costs, and energy life-cycle costs of composite floor structures composed of a reinforced concrete slab and steel I-beams. In a multi-parametric study, mixed-integer non-linear programming (MINLP) optimizations are carried out for different design parameters, such as different loads, spans, concrete and steel classes, welded, IPE and HEA steel profiles, and different energy consumption cases. Different objective functions of the composite structure are defined for optimization, such as mass, direct cost, and energy life-cycle cost objective functions. Moreover, three different energy consumption cases are proposed for the energy life-cycle cost objective: an energy efficient case (50 kWh/m2), an energy inefficient case (100 kWh/m2), and a high energy consumption case (200 kWh/m2). In each optimization, the objective function of the structure is subjected to the design, load, resistance, and deflection (in)equality constraints defined in accordance with Eurocode specifications. The optimal results calculated with different criteria are then compared to obtain competitive composite designs. Comparative diagrams have been developed to determine the competitive spans of composite floor structures with three different types of steel I beam: those made of welded sections and those made of IPE or HEA sections, respectively. The paper also answers the question of how different objective functions affect the amount of the calculated costs and masses of the structures. It has been established that the higher (more wasteful) the energy consumption case is, the lower the obtained masses of the composite floor structures are. In cases with higher energy consumption, the energy life-cycle costs are several times higher than the costs determined in direct cost optimization. At the end of the paper, a recommended optimal design for a composite floor system is presented that has been developed on the multi-parametric energy life-cycle cost optimization, where the energy efficient case is considered. An engineer or researcher can use the recommendations presented here to find a suitable optimal composite structure design for a desired span and uniformly imposed load.


2012 ◽  
Author(s):  
Jin How Ho ◽  
Azlan Abd. Rahman

Artikel ini membincangkan kajian ringkas berkaitan analisis kos kitaran hayat terhadap langkah-langkah pembaikan pengaratan bagi jambatan dan struktur marin konkrit yang terdedah kepada karbonasi atau serangan natrium klorida daripada air laut atau sumber-sumber lain. Perisian kos kitaran hayat, Bridge LCC 2.0 digunakan untuk menjalankan analisi kitaran hayat untuk tiga kes kajian melibatkan kaedah nilai bersih kini. Keputusan kajian menunjukkan analisis kos kitaran hayat berkeupayaan untuk membantu jurutera dan agensi pengangkutan dalam menilai keputusan penyelenggaraan yang efektif berkaitan dengan masalah pengaratan. Ia boleh digunakan sebagai alat analisis ekonomi kejuruteraan yang membantu mantaksir kos-kos perbezaan dan membuat pilihan terhadap langkah pembaikan pengaratan yang berkesan. Analisis kos kitaran hayat bagi langkah pembaikan dipengaruhi oleh banyak pemboleh ubah seperti kos permulaan, kos penyelenggaraan, tahun kekerapan, dan jangka masa analisis. Amalan terbaik untuk analisis kos kitaran hayat bukan sahaja mengambil kira perbelanjaan oleh agensi, tetapi perlu mempertimbangkan kos-kos oleh pengguna dan analisis sensitiviti di sepanjang jangka hayat sesuatu langkah pembaikan. Kata kunci: Analisis kos kitaran hayat, jambatan konkrit, pengaratan, langkah, pembaikan, pemulihan struktur, keberkesanan kos, kaedah nilai bersih kini (NPV) This paper discusses a short study on life cycle cost analysis (LCCA) on corrosion remedial measures for concrete bridges and marine structures, which are subjected to carbonation or ingress of sodium chloride from sea water and other sources. Life cycle costing software, Bridge LCC 2.0, was used to perform life cycle cost analyses on three case studies, based on net present value method. The analysis of the results showed that LCCA is capable of assisting engineers or transportation agencies to evaluate optimum maintenance decisions in corrosion–related problems. It can be used as an engineering economic analysis tool that helps in qualifying the differential costs and choosing the most cost–effective corrosion remedial measures. Life cycle costs for the remedial measures are influenced by many costing variables such as initial costs, periodic maintenance costs, frequency years and analysis period. The best practice of LCCA should not only consider agency expenditures but also user costs and sensitivity analysis throughout the service life of a remedial measure. Key words: Life cycle analysis, concrete bridges, corrosion, remedial measures, structural rehabilitation, cost-effective, net present value method (NPV)


Author(s):  
Laxman Y. Waghmode ◽  
Ravindra S. Birajdar ◽  
Shridhar G. Joshi

It is well known that the pumps are the largest consumers of industrial motor energy and account for more than 25% of electricity consumption. The life cycle cost of a pump is the total lifetime cost associated with procurement, installation, operation, maintenance and its disposal. For majority of heavy usage pumps, the lifetime energy and/or maintenance cost will dominate the life cycle costs. Hence a greater understanding of all the cost components making up the total life cycle costs should provide an opportunity to achieve a substantial savings in energy and maintenance costs. This will further enable optimizing pumping system efficiency and improving pump and system reliability. Therefore in this context, the life cycle cost analysis of heavy usage pumps is quite important. This paper focuses on an application of a methodology of determining the life cycle cost of a typical heavy usage multistage centrifugal pump. In this case, all the cost components associated with the pump-set have been determined and classified under different categories. The data with regard to initial investment costs, operation costs, maintenance and repair costs and disposal costs for the pump considered for this case study was collected from the concerned pump manufacturer along with the unit cost of each component, quantity used and their weights. By applying the principles of reliability and maintainability engineering and using the data obtained from the design, manufacturing and maintenance departments, the component-wise values of MTBF (Mean Time Between Failures) and MTTR (Mean Time To Repair) were estimated. The results of the life cycle cost analysis of the specimen pump were compared with the life cycle costs of similar pumps reported in the literature. From this comparison of results, it can be concluded that, the initial cost of the pump is the only a fraction of the total life cycle cost. The operating cost of the pump dominates the life cycle costs especially in case of heavy usage pumps. The maintenance cost varies approximately from 0.6 to 2.5 times the initial cost of the pump. The life cycle cost of the pump varies approximately from 12 to 33 times the initial cost of the pump. The operation and maintenance cost is almost 92 to 97 per cent of the life cycle cost. The detailed analysis carried out in this paper is expected to provide guidelines to the pump manufactures/practicing engineers in selecting a heavy usage multistage centrifugal pump based on the total lifetime cost rather than only on initial price.


2020 ◽  
Vol 8 (1) ◽  
pp. 46-55
Author(s):  
Sola Fide Krisnanda

Dalam pembangunan sebuah gedung, pemilik gedung pasti dihadapkan dengan berbagai alternatif dalam melakukan pemilihan suatu material, produk ataupun sistem gedung. Selain aspek teknis, biaya pun turut menjadi aspek penting yang perlu menjadi salah satu pertimbangan. Untuk mengetahui pilihan alternatif yang lebih hemat diperlukan metode penghitungan, salah satunya adalah dengan menggunakan metode  analisis life cycle cost (LCC). LCC menghitung keseluruhan biaya mulai dari biaya awal, biaya penggantian serta biaya operasional dan pemeliharaan. Metode yang dilakukan pada studi ini menggunakan life cycle cost analysis berdasarkan ISO 15686:5 dengan periode 25 tahun. Net present value juga diterapkan dalam perhitungan untuk mencari nilai saat ini dari total LCC. Hasil perhitungan pada bangunan Bank Mandiri Syariah Yogyakarta dirumuskan menjadi tiga kelompok estimasi biaya yaitu biaya awal, biaya operasional dan biaya pemeliharan dan penggantian dengan besar biaya masing-masing Rp 19,412,002,758 (47%), Rp 15,979,434,435 (39%) dan Rp 5,868,499,911 (14%). Total LCC 25 tahun sebesar Rp 41,259,937,014.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Vaibhav Malhotra ◽  
W. E. Lear ◽  
J. R. Khan ◽  
S. A. Sherif

A life cycle cost analysis was performed to compare life cycle costs of a novel gas turbine engine to those of a conventional microturbine with similar power capacity. This engine, called the high-pressure regenerative turbine engine (HPRTE), operates on a pressurized semiclosed cycle and is integrated with a vapor absorption refrigeration system. The HPRTE uses heat from its exhaust gases to power the absorption refrigeration unit, which cools the high-pressure compressor inlet of the HPRTE to below ambient temperatures and also produces some external refrigeration. The life cycle cost analysis procedure is based on principles laid out in the Federal Energy Management Program. The influence of different design and economic parameters on the life cycle costs of both technologies is analyzed. The results of this analysis are expressed in terms of the cost ratios of the two technologies. The pressurized nature of the HPRTE leads to compact components resulting in significant savings in equipment cost versus those of a microturbine. Revenue obtained from external refrigeration offsets some of the fuel costs for the HPRTE, thus proving to be a major contributor in cost savings for the HPRTE. For the base case of a high-pressure turbine (HPT) inlet temperature of 1373 K and an exit temperature of 1073 K, the HPRTE showed life cycle cost savings of 7% over a microturbine with a similar power capacity.


2017 ◽  
Vol 2639 (1) ◽  
pp. 93-101 ◽  
Author(s):  
Mehdi Akbarian ◽  
Omar Swei ◽  
Randolph Kirchain ◽  
Jeremy Gregory

Life-cycle cost analysis (LCCA) is a commonly used approach by pavement engineers to compare the economic efficiency of alternative pavement design and maintenance strategies. Over the past two decades, the pavement community has augmented the LCCA framework used in practice by explicitly accounting for uncertainty in the decision-making process and incorporating life-cycle costs not only to the agency but also to the users of a facility. This study represents another step toward improving the LCCA process by focusing on methods to characterize the cost of relevant pay items for an LCCA as well as integrating costs accrued to users of a facility caused by pavement–vehicle interaction (PVI) and work zone delays. The developed model was implemented in a case study to quantify the potential implication of both of these components on the outcomes of an LCCA. Results from the construction cost analysis suggest that the proposed approaches in this paper lead to high-fidelity estimates that outperform current practice. Furthermore, results from the case study indicate that PVI can be a dominant contributor to total life-cycle costs and, therefore, should be incorporated in future LCCAs.


Sign in / Sign up

Export Citation Format

Share Document