scholarly journals Mass, Direct Cost and Energy Life-Cycle Cost Optimization of Steel-Concrete Composite Floor Structures

2021 ◽  
Vol 11 (21) ◽  
pp. 10316
Author(s):  
Stojan Kravanja ◽  
Uroš Klanšek ◽  
Tomaž Žula

This paper presents a study showing the optimization of the mass, direct (self-manufacturing) costs, and energy life-cycle costs of composite floor structures composed of a reinforced concrete slab and steel I-beams. In a multi-parametric study, mixed-integer non-linear programming (MINLP) optimizations are carried out for different design parameters, such as different loads, spans, concrete and steel classes, welded, IPE and HEA steel profiles, and different energy consumption cases. Different objective functions of the composite structure are defined for optimization, such as mass, direct cost, and energy life-cycle cost objective functions. Moreover, three different energy consumption cases are proposed for the energy life-cycle cost objective: an energy efficient case (50 kWh/m2), an energy inefficient case (100 kWh/m2), and a high energy consumption case (200 kWh/m2). In each optimization, the objective function of the structure is subjected to the design, load, resistance, and deflection (in)equality constraints defined in accordance with Eurocode specifications. The optimal results calculated with different criteria are then compared to obtain competitive composite designs. Comparative diagrams have been developed to determine the competitive spans of composite floor structures with three different types of steel I beam: those made of welded sections and those made of IPE or HEA sections, respectively. The paper also answers the question of how different objective functions affect the amount of the calculated costs and masses of the structures. It has been established that the higher (more wasteful) the energy consumption case is, the lower the obtained masses of the composite floor structures are. In cases with higher energy consumption, the energy life-cycle costs are several times higher than the costs determined in direct cost optimization. At the end of the paper, a recommended optimal design for a composite floor system is presented that has been developed on the multi-parametric energy life-cycle cost optimization, where the energy efficient case is considered. An engineer or researcher can use the recommendations presented here to find a suitable optimal composite structure design for a desired span and uniformly imposed load.

2021 ◽  
Author(s):  
Amir Fereidouni Kondri

This report presents the methodology for determining least cost energy efficient upgrade solutions in new residential housing using brute force sequential search (BFSS) method for integration into the reference house to reduce energy consumption while minimizing the net present value (NPV) of life cycle costs. The results showed that, based on the life cycle cost analysis of 30 years, the optimal upgrades resulted in the average of 19.25% (case 1), 31% (case 2a), and 21% (case 2b) reduction in annual energy consumption. Economic conditions affect the sequencing of the upgrades. In this respect the preferred upgrades to be performed in order are; domestic hot water heating, above grade wall insulation, cooling systems, ceiling insulation, floor insulation, heat recovery ventilator, basement slab insulation and below grade wall insulation. When the gas commodity pricing becomes high, the more energy efficient upgrades for domestic hot water (DHW) get selected at a cost premium.


2021 ◽  
Author(s):  
Amir Fereidouni Kondri

This report presents the methodology for determining least cost energy efficient upgrade solutions in new residential housing using brute force sequential search (BFSS) method for integration into the reference house to reduce energy consumption while minimizing the net present value (NPV) of life cycle costs. The results showed that, based on the life cycle cost analysis of 30 years, the optimal upgrades resulted in the average of 19.25% (case 1), 31% (case 2a), and 21% (case 2b) reduction in annual energy consumption. Economic conditions affect the sequencing of the upgrades. In this respect the preferred upgrades to be performed in order are; domestic hot water heating, above grade wall insulation, cooling systems, ceiling insulation, floor insulation, heat recovery ventilator, basement slab insulation and below grade wall insulation. When the gas commodity pricing becomes high, the more energy efficient upgrades for domestic hot water (DHW) get selected at a cost premium.


Author(s):  
A. J. Schuetz

A conceptual design study has been conducted for an all-new, land-based patrol aircraft for the U.S. Navy. The selected propulsion system was a conceptual high-speed turboprop. An antisubmarine warfare mission was chosen for the design flight profile. Probable peacetime utilization was postulated so that the engine duty cycle could be estimated. Aircraft designs were optimized for minimum takeoff gross weight (TOGW) and for minimum life cycle cost (LCC). It was shown that the aircraft performance requirements and design constraints bound the optimization process so tightly that the same point design is obtained for both TOGW and LCC criteria. The contribution of the engine costs to the overall life cycle costs was examined. The sensitivity of the aircraft optimization to the engine characteristics — specific fuel consumption (SFC), length, diameter, and cost — was analyzed. It was determined that SFC is the most significant engine characteristic.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nadezhda Doseva ◽  
Daniela Chakyrova

Abstract Around 60 % of residential buildings in Bulgaria are constructed before the Nineties of the last century, i.e. they have been in use for more than 30 years. Furthermore, the final energy consumption of Bulgarian residential buildings is the highest in Europe. This raises the question of the improvement of the energy performance of existing residential buildings. The current study is intended to assess the influence of the heat transmittance coefficient of the external building envelop elements on the annual energy consumption for heating and cooling and finding its optimal value. Life-cycle cost (LCC) as the optimization criterion is using. The optimization procedure is conducted for the climatic and economic conditions in Bulgaria and taking into account the existing legal framework. The minimum of the building life cycle costs is determined by using a genetic algorithm.


Author(s):  
Safa Nayır ◽  
Ümit Bahadır ◽  
Şakir Erdoğdu ◽  
Vedat Toğan

Energy efficiency in the construction industry is crucial to reducing increased energy consumption. A significant portion of the energy is consumed in residential buildings. Thermal properties of the materials used in the building envelope can reduce the energy consumed in the buildings and thus contribute to the building economy. For this purpose, in the study, structural lightweight concretes (SLWC) with a lower thermal conductivity than normal weight concrete (NWC) were produced and energy efficiency and life cycle costs were compared between these concretes on a 1 + 1 reference flat. The compressive strength, unit weights and thermal conductivity coefficients of SLWCs and NWC were determined experimentally. Heating and cooling energy consumption and life cycle costs for the flat were calculated using the DesignBuilder simulation program according to the different concrete types produced. The results indicate that the thermal conductivity coefficients of all SLWCs produced were about 37–45 % lower than those of NWC. All mixes of the SLWCs provided energy saving by about 18–25 % compared to the NWC and two SLWCs reduced the life cycle cost by 4 %. In addition, the results showed that the best SLWC about energy was not the best SLWC about life cycle cost.


Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Florian Stuhlenmiller ◽  
Steffi Weyand ◽  
Jens Jungblut ◽  
Liselotte Schebek ◽  
Debora Clever ◽  
...  

Modern industry benefits from the automation capabilities and flexibility of robots. Consequently, the performance depends on the individual task, robot and trajectory, while application periods of several years lead to a significant impact of the use phase on the resource efficiency. In this work, simulation models predicting a robot’s energy consumption are extended by an estimation of the reliability, enabling the consideration of maintenance to enhance the assessment of the application’s life cycle costs. Furthermore, a life cycle assessment yields the greenhouse gas emissions for the individual application. Potential benefits of the combination of motion simulation and cost analysis are highlighted by the application to an exemplary system. For the selected application, the consumed energy has a distinct impact on greenhouse gas emissions, while acquisition costs govern life cycle costs. Low cycle times result in reduced costs per workpiece, however, for short cycle times and higher payloads, the probability of required spare parts distinctly increases for two critical robotic joints. Hence, the analysis of energy consumption and reliability, in combination with maintenance, life cycle costing and life cycle assessment, can provide additional information to improve the resource efficiency.


2021 ◽  
Vol 13 (12) ◽  
pp. 6974
Author(s):  
Charlotte Cambier ◽  
Waldo Galle ◽  
Niels De De Temmerman

In addition to the environmental burden of its construction and demolition activities, the Flemish housing market faces a structural affordability challenge. As one possible answer, this research explores the potential of so-called expandable houses, being built increasingly often. Through specific design choices that enable the disassembly and future reuse of individual components and so align with the idea of a circular economy, expandable houses promise to provide ever-changing homes with a smaller impact on the environment and at a lower cost for clients. In this paper, an expandable house suitable for various housing needs is conceived through a scenario-based research-by-design approach and compared to a reference house for Flanders. Subsequently, for both houses the life cycle costs are calculated and compared. The results of this exploration support the proposition that designing expandable houses can be a catalyst for sustainable, circular housing development and that households could benefit from its social, economic and ecological qualities. It requires, however, a dynamic perspective on evaluating their life-cycle impact.


2015 ◽  
Vol 187 ◽  
pp. 6-13 ◽  
Author(s):  
Jingzheng Ren ◽  
Liang Dong ◽  
Lu Sun ◽  
Michael Evan Goodsite ◽  
Shiyu Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document