scholarly journals Buckling of Spherical Concrete Shells

Author(s):  
Emad Zolqadr

This study is focused on the buckling behavior of spherical concrete shells (domes) under different loading conditions. The background of analytical analysis and recommended equations for calculation of design buckling pressure for spherical shells are discussed in this study. The finite element (FE) method is used to study the linear and nonlinear response of spherical concrete shells under different vertical and horizontal load combination buckling analysis. The effect of different domes support conditions are considered and investigated in this study. Several dome configurations with different geometry specifications are used in this study to attain reliable results. The resulted buckling pressures from linear FE analysis for all the cases are close to the analytical equations for elastic behavior of spherical shells. The results of this study show that geometric nonlinearity widely affects the buckling resistance of the spherical shells. The effect of horizontal loads due to horizontal component of earthquake is not currently considered in the recommended equation by The American Concrete Institute (ACI) to design spherical concrete shells against buckling. However, the results of this study show that horizontal loads have a major effect on buckling pressure and it could not be ignored.

2021 ◽  
Author(s):  
Emad Zolqadr

This study is focused on the buckling behavior of spherical concrete shells (domes) under different loading conditions. The background of analytical analysis and recommended equations for calculation of design buckling pressure for spherical shells are discussed in this study. The finite element (FE) method is used to study the linear and nonlinear response of spherical concrete shells under different vertical and horizontal load combination buckling analysis. The effect of different domes support conditions are considered and investigated in this study. Several dome configurations with different geometry specifications are used in this study to attain reliable results. The resulted buckling pressures from linear FE analysis for all the cases are close to the analytical equations for elastic behavior of spherical shells. The results of this study show that geometric nonlinearity widely affects the buckling resistance of the spherical shells. The effect of horizontal loads due to horizontal component of earthquake is not currently considered in the recommended equation by The American Concrete Institute (ACI) to design spherical concrete shells against buckling. However, the results of this study show that horizontal loads have a major effect on buckling pressure and it could not be ignored.


2000 ◽  
Vol 122 (3) ◽  
pp. 129-135 ◽  
Author(s):  
Ergun Kuru ◽  
Alexander Martinez ◽  
Stefan Miska ◽  
Weiyong Qiu

An experimental setup was built at the University of Tulsa to study buckling and post-buckling behavior of pipes constrained in straight horizontal and curved wellbores. Experiments were conducted to investigate the axial force transfer with and without static internal pressure. Different stages of buckling phenomena and their relation to the axial force, the pipe diameter (1/4 and 3/8 in.) and the pipe end-support conditions have also been investigated. Experimental results have shown that the buckling load is a strong function of the pipe diameter and the pipe end-support conditions. Static internal pressure appears to have insignificant influence on the buckling behavior of pipes. A brief review of recently developed mathematical models to predict buckling behavior of pipes in inclined, curved, and horizontal sections of wellbore is also presented. Applications of the current theory are presented by using recently developed computer simulator. Results of the theoretical analysis have confirmed the versatility and effectiveness of computer simulator for better understanding and solving buckling related problems in the field. [S0195-0738(00)00903-1]


Author(s):  
G D Galletly ◽  
J Blachut

Welded hemispherical or spherical shells in practice have initial geometric imperfections in them that are random in nature. These imperfections determine the buckling resistance of a shell to external pressure but their magnitudes will not be known until after the shell has been built. If suitable simplified, but realistic, imperfection shapes can be found, then a reasonably accurate theoretical prediction of a spherical shell's buckling/collapse pressure should be possible at the design stage. The main aim of the present paper is to show that the test results obtained at the David Taylor Model Basin (DTMB) on 28 welded hemispherical shells (having diameters of 0.75 and 1.68 m) can be predicted quite well using such simplified shape imperfections. This was done in two ways. In the first, equations for determining the theoretical collapse pressures of externally pressurized imperfect spherical shells were utilized. The only imperfection parameter used in these equations is δ0, the amplitude of the inward radial deviation of the pole of the shell. Two values for δ0 were studied but the best overall agreement between test and theory was found using δ0 = 0.05 ✓ (Rt). This produced ratios of experimental to numerical collapse pressures in the range 0.98–1.30 (in most cases the test result was the higher). The second approach also used simplified imperfection shapes, but in conjunction with the shell buckling program BOSOR 5. The arc length of the imperfection was taken as simp = k ✓ (Rt) (with k = 3.0 or 3.5) and its amplitude as δ0 = 0.05√(Rt). Using this procedure on the 28 DTMB shells gave satisfactory agreement between the experimental and the computer predictions (in the range 0.92–1.20). These results are very encouraging. The foregoing method is, however, only a first step in the computerized buckling design of welded spherical shells and it needs to be checked against spherical shells having other values of R/t. In addition, more experimental information on the initial geometric imperfections in welded spherical shells (and how they vary with R/t) is desirable. A comparison is also given in the paper of the collapse pressures of spherical shells, as obtained from codes, with those predicted by computer analyses when the maximum shape deviations allowed by the codes are employed in the computer programs. The computed collapse pressures are frequently higher than the values given by the buckling strength curves in the codes. On the other hand, some amplitudes of imperfections studied in the paper give acceptable results. It would be helpful to designers if agreement could be reached on an imperfection shape (amplitude and arc length) that was generally acceptable. Residual stresses are not considered in this paper. They might be expected to decrease a spherical shell's buckling resistance to external pressure. However, experimentally, this does not always happen.


2016 ◽  
Vol 08 (03) ◽  
pp. 1650028
Author(s):  
Youhong Sun ◽  
Baisheng Wu ◽  
Yongping Yu

This paper is concerned with thermal post-buckling of uniform isotropic beams with axially immovable spring-hinged ends. The ends of the beam with elastic rotational restraints represent the actual practical support conditions and the classical hinged and clamped conditions can be achieved as the limiting cases of the rotational spring stiffness. The governing differential–integral equation is solved by assuming suitable admissible function for lateral displacement and by employing the Galerkin method. A brief and explicit analytical approximate formulation is established to predict the thermal post-buckling behavior of the beam. The present analytical approximate expressions show excellent agreement with the corresponding numerical solutions based on the shooting method. This confirms the effectiveness and verifies the accuracy of the formulas established.


2015 ◽  
Vol 10 (Special-Issue1) ◽  
pp. 106-110
Author(s):  
A Roshan ◽  
R Farahoni

The chevron bracing system provides the highest level of stiffness and average ductility by using the yield or buckling of braces. This system demonstrates weak post-buckling behavior while other structural members such as beams, columns and joints show elastic behavior. As a result of bracing buckling at a story, the unbalancing force acts perpendicular on the middle of the beam span and results in the concentration of damage on that story. Consequently, the affected story becomes prone to the soft story mechanism and the structure collapses eventually. In order to prevent this problem, it is possible to place vertical elements (zippers) between beams so that the head of bracings are connected at height and the resulting unbalancing force in the story is transferred to upper stories. Such a frame is known as the zipper frame. With a proper zipper configuration, it is possible to address the problems and weaknesses of the chevron bracing frame. Therefore, zipper frames can become proper substitutes for this type of bracing systems. By using the chevron element in the chevron bracing and turning it into a zipper frame, it is possible to increase the strength, ductility and energy absorption capacity of such frames.


2010 ◽  
Vol 10 (03) ◽  
pp. 363-385 ◽  
Author(s):  
CILMAR BASAGLIA ◽  
DINAR CAMOTIM ◽  
NUNO SILVESTRE

This paper is concerned with the development and application of a Generalized Beam Theory (GBT) formulation to analyse the local and global buckling behavior of thin-walled steel plane and space frames with arbitrary loadings and various support conditions. This formulation takes into account the geometrical effects stemming from the presence of longitudinal normal stress gradients and also the ensuing pre-buckling shear stresses. Following a description of the main concepts and procedures involved in determining the finite element and frame linear and geometric stiffness matrices (incorporating the influence of joints, applied loading and support conditions), one presents and discusses some numerical results concerning the local and global buckling behavior of (i) simple "L-shaped" frames and (ii) space frames formed by two symmetrical portal frames joined through a transverse beam. For validation purposes, the GBT-based results are compared with those obtained by rigorous shell finite element analyses using ANSYS. An excellent correlation, for both the critical buckling loads and mode shapes, is found in all cases.


Sign in / Sign up

Export Citation Format

Share Document