scholarly journals Preliminary analysis of lip-wing concept using computational fluid dynamics and actuator disc theory

2021 ◽  
Author(s):  
Peter Walker

This thesis presents a preliminary analysis of the lip wing concept proposed by Dusan Stan of Aliptera Aircraft. A inviscid CFD-CAD actuator disk model was used to simulate a comparable geometry to that which was investigated experimental by Aliptera Aircraft. In general, a 10%-12% increase in thrust was produced at an optimal lip wing angle of 30o. This increase in thrust was consistent with the experimental results obtained by Aliptera Aircraft. These preliminary results are promising and encourage further research

2021 ◽  
Author(s):  
Peter Walker

This thesis presents a preliminary analysis of the lip wing concept proposed by Dusan Stan of Aliptera Aircraft. A inviscid CFD-CAD actuator disk model was used to simulate a comparable geometry to that which was investigated experimental by Aliptera Aircraft. In general, a 10%-12% increase in thrust was produced at an optimal lip wing angle of 30o. This increase in thrust was consistent with the experimental results obtained by Aliptera Aircraft. These preliminary results are promising and encourage further research


2013 ◽  
Vol 662 ◽  
pp. 586-590
Author(s):  
Gang Lu ◽  
Qing Song Yan ◽  
Bai Ping Lu ◽  
Shuai Xu ◽  
Kang Li

Four types of Super Typhoon drip emitter with trapezoidal channel were selected out for the investigation of the flow field of the channel, and the CFD (Computational Fluid Dynamics) method was applied to simulate the micro-field inside the channel. The simulation results showed that the emitter discharge of different turbulent model is 4%-14% bigger than that of the experimental results, the average discharge deviation of κ-ω and RSM model is 5, 4.5 respectively, but the solving efficiency of the κ-ω model is obviously higher than that of the RSM model.


Author(s):  
Lilas Deville ◽  
Mihai Arghir

Brush seals are a mature technology that has generated extensive experimental and theoretical work. Theoretical models range from simple correlations with experimental results to advanced numerical approaches coupling the bristles deformation with the flow in the brush. The present work follows this latter path. The bristles of the brush are deformed by the pressure applied by the flow, by the interference with the rotor and with the back plate. The bristles are modeled as linear beams but a nonlinear numerical algorithm deals with the interferences. The brush with its deformed bristles is then considered as an anisotropic porous medium for the leakage flow. Taking into account, the variation of the permeability with the local geometric and flow conditions represents the originality of the present work. The permeability following the principal directions of the bristles is estimated from computational fluid dynamics (CFD) calculations. A representative number of bristles are selected for each principal direction and the CFD analysis domain is delimited by periodicity and symmetry boundary conditions. The parameters of the CFD analysis are the local Reynolds number and the local porosity estimated from the distance between the bristles. The variations of the permeability are thus deduced for each principal direction and for Reynolds numbers and porosities characteristic for brush seal. The leakage flow rates predicted by the present approach are compared with experimental results from the literature. The results depict also the variations of the pressures, of the local Reynolds number, of the permeability, and of the porosity through the entire brush seal.


CFD letters ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 15-26
Author(s):  
Adnan Ghulam Mustafa ◽  
Mohd Fadhil Majnis ◽  
Nor Azyati Abdul Muttalib

Mixing of fluid can happen in existence or absence of impeller which will affect the mixing performance. The hydrodynamics behavior of fluid has a strong effect on the mixing. The design of mixing systems and operation using the agitated tanks is complicated because it is difficult to obtain accurate information for turbulence’s impeller induced. Computational Fluid Dynamics can be used to provide a detailed comprehension of those systems. This paper describes the effect of various designs of impeller in miniature stirred tank reactor towards the mixing of the calcium alginate beads with the milk using Computational Fluid Dynamics (CFD) software, ANSYS Fluent 19.2. The four different type of impellers are edge beater, 5-turbine blade, t-shape, and paddle. The impeller was simulated at different speeds of 150 rpm, 250 rpm, and 300 rpm. K-epsilon turbulence model was employed to simulate the flow distribution pattern of calcium alginate beads and the Multiple Reference Frame approach was used for the impeller rotation’s simulation. The simulation results obtained have a good agreement with the experimental results in term of vortex formation. The simulation results obtained for contour plots were fitted well with the experimental results as well as with pattern of impeller flow which was also studied. As a result, an optimal design of the impeller that is able to produce good mixing can be achieved using CFD analysis. The results obtained after performing the simulation proved that edge beater blade outperformed the other impellers and took the least time to fully distribute the calcium alginate beads in the tank at 250 rpm compared to 150 and 300 rpm. It can also be concluded that the edge beater blade is the best for the mixing of two-phase fluid and also produces mixed pattern flow. The obtained results from CFD can also be used to scale up the mixing process in larger systems.


2020 ◽  
Vol 12 (2) ◽  
pp. 168781401984047
Author(s):  
Wonyoung Jeon ◽  
Jeanho Park ◽  
Seungro Lee ◽  
Youngguan Jung ◽  
Yeesock Kim ◽  
...  

An experimental and analytical method to evaluate the performance of a loop-type wind turbine generator is presented. The loop-type wind turbine is a horizontal axis wind turbine with a different shaped blade. A computational fluid dynamics analysis and experimental studies were conducted in this study to validate the performance of the computational fluid dynamics method, when compared with the experimental results obtained for a 1/15 scale model of a 3 kW wind turbine. Furthermore, the performance of a full sized wind turbine is predicted. The computational fluid dynamics analysis revealed a sufficiently large magnitude of external flow field, indicating that no factor influences the flow other than the turbine. However, the experimental results indicated that the wall surface of the wind tunnel significantly affects the flow, due to the limited cross-sectional size of the wind tunnel used in the tunnel test. The turbine power is overestimated when the blockage ratio is high; thus, the results must be corrected by defining the appropriate blockage factor (the factor that corrects the blockage ratio). The turbine performance was corrected using the Bahaj method. The simulation results showed good agreement with the experimental results. The performance of an actual 3 kW wind turbine was also predicted by computational fluid dynamics.


Author(s):  
Hongchao Wang ◽  
Scott Draper ◽  
Wenhua Zhao ◽  
Hugh Wolgamot ◽  
Liang Cheng

This paper expounds the process of successfully establishing a computational fluid dynamics (CFD) model to accurately reproduce experimental results of three-dimensional (3D) gap resonance between two fixed ship-shaped boxes. The ship-shaped boxes with round bilges were arranged in a side-by-side configuration to represent a floating liquefied natural gas offloading scenario and were subjected to NewWave-type transient wave groups. We employ the open-source CFD package openfoam to develop the numerical model. Three-dimensional gap resonance differs from its two-dimensional (2D) counterpart in allowing spatial structure along the gap and hence multiple modes can easily be excited in the gap by waves of moderate spectral bandwidth. In terms of numerical setup and computational cost, a 3D simulation is much more challenging than a 2D simulation and requires careful selection of relevant parameters. In this respect, the mesh topology and size, domain size and boundary conditions are systematically optimized. It is shown that to accurately reproduce the experimental results in this case, the cell size must be adequate to resolve both the undisturbed incident waves and near-wall boundary layer. By using a linear iterative method, the NewWave-type transient wave group used in the experiment is accurately recreated in the numerical wave tank (NWT). Numerical results including time series of gap responses, resonant amplitudes and frequencies, and mode shapes show excellent agreement with experimental data.


2005 ◽  
Vol 127 (1) ◽  
pp. 153-155 ◽  
Author(s):  
Keith Gawlik ◽  
Craig Christensen ◽  
Charles Kutscher

The performance of low-conductivity unglazed, transpired solar collectors was determined numerically and experimentally. The numerical work consisted of modeling flow conditions, plate geometries, and plate conductivities with modified commercial computational fluid dynamics software, and the experimental work compared the performance of two plate geometries made with high and low conductivity materials under a variety of flow conditions. Good agreement was found between the numerical and experimental results. The results showed that for practical low-conductivity materials, performance differed little from the equivalent plate geometry in high-conductivity material.


Sign in / Sign up

Export Citation Format

Share Document