scholarly journals Lightweight Self-consolidating Concrete: Statistical Modelling, Mixture Design And Performance Evaluation

2021 ◽  
Author(s):  
Abdurrahmaan Lotfy

A response surface method based experimental study was carried out to model the influence of key parameters on properties of Lightweight Self-Consolidating Concrete (LWSCC) mixtures developed with various types of lightweight aggregates namely, furnace slag (FS), expanded clay (EC), and expanded shale (ESH). Three key parameters were selected to derive mathematical models for evaluating fresh and hardened properties. Water/binder ratio of 0.30 to 0.40, high range water reducing agent (HRWRA) of 0.3 to 1.2% (by total content of binder) and total binder content of 410 to 550 kg/m3 were used for the design of LWSCC mixtures. Slump flow diameter, V-funnel flow time, J-ring flow diameter, J-ring height difference, L-box ratio, filling capacity, bleeding, fresh air content, initial and final set times, sieve segregation, fresh/28-day air/oven dry unit weights and 7- and 28-day compressive strengths were evaluated. Utilizing the developed model, three optimum LWSCC mixes with high desirability were formulated and tested for mechanical, mass transport and durability characteristics. The optimized industrial LWSCC mixtures were produced in lab/industrial set-up with furnace slag, expanded clay, and expanded shale aggregates. The mixtures were evaluated by conducting compressive/flexural/split tensile strength, bond strength (pre/post corrosion), drying shrinkage, sorptivity, absorption, porosity, rapid chloride-ion permeability, hardened air void (%), spacing factor, corrosion resistance, resistance to elevated temperature, salt scaling, freeze-thaw iv resistance, and sulphuric acid resistance tests. It was possible to produce robust LWSCC mixtures that satisfy the European EFNARC criteria for Self-Consolidating Concrete (SCC). The proposed mix design model is proved to be a useful tool for understanding the interactions among mixture parameters that affect important characteristics of LWSCC. This understanding might simplify the mix design process and the required testing, as the model identifies the relative significance of each parameter, provides important information required to optimize mix design and consequently minimizes the effort needed to optimize LWSCC mixtures, and ensures balance among parameters affecting fresh and hardened properties. LWSCCs with FS, EC and ESH lightweight aggregates can reduce the construction pollution, increase the design solutions, extend the service life of the structure and hence, promote sustainability in construction industry.

2021 ◽  
Author(s):  
Abdurrahmaan Lotfy

A response surface method based experimental study was carried out to model the influence of key parameters on properties of Lightweight Self-Consolidating Concrete (LWSCC) mixtures developed with various types of lightweight aggregates namely, furnace slag (FS), expanded clay (EC), and expanded shale (ESH). Three key parameters were selected to derive mathematical models for evaluating fresh and hardened properties. Water/binder ratio of 0.30 to 0.40, high range water reducing agent (HRWRA) of 0.3 to 1.2% (by total content of binder) and total binder content of 410 to 550 kg/m3 were used for the design of LWSCC mixtures. Slump flow diameter, V-funnel flow time, J-ring flow diameter, J-ring height difference, L-box ratio, filling capacity, bleeding, fresh air content, initial and final set times, sieve segregation, fresh/28-day air/oven dry unit weights and 7- and 28-day compressive strengths were evaluated. Utilizing the developed model, three optimum LWSCC mixes with high desirability were formulated and tested for mechanical, mass transport and durability characteristics. The optimized industrial LWSCC mixtures were produced in lab/industrial set-up with furnace slag, expanded clay, and expanded shale aggregates. The mixtures were evaluated by conducting compressive/flexural/split tensile strength, bond strength (pre/post corrosion), drying shrinkage, sorptivity, absorption, porosity, rapid chloride-ion permeability, hardened air void (%), spacing factor, corrosion resistance, resistance to elevated temperature, salt scaling, freeze-thaw iv resistance, and sulphuric acid resistance tests. It was possible to produce robust LWSCC mixtures that satisfy the European EFNARC criteria for Self-Consolidating Concrete (SCC). The proposed mix design model is proved to be a useful tool for understanding the interactions among mixture parameters that affect important characteristics of LWSCC. This understanding might simplify the mix design process and the required testing, as the model identifies the relative significance of each parameter, provides important information required to optimize mix design and consequently minimizes the effort needed to optimize LWSCC mixtures, and ensures balance among parameters affecting fresh and hardened properties. LWSCCs with FS, EC and ESH lightweight aggregates can reduce the construction pollution, increase the design solutions, extend the service life of the structure and hence, promote sustainability in construction industry.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 209
Author(s):  
Bletty Baby ◽  
Jerry Anto ◽  
Basil Johny ◽  
Sreenath S

In this study, observations were made on the effect of blending cement with fly ash and Alccofine on the fresh and hardened properties of micro steel fibre reinforced self-consolidating concrete (SCC). SCC mixes were prepared based on EFNARC guidelines. Blending has been done by replacing 5%, 10% and 15% of cement with Alccofine. Slump flow, L-box and V-funnel tests were conducted to study the flow characteristics of SCC. Compressive strength, split tensile strength, and flexural strength tests were performed to assess the strength characteristics. It was observed that the SCC with 10% replacement of cement with Alccofine showed better results than the other mixes. Further, the modification of the optimum blend with 10% Alccofine was made by adding variable percentages (0.5%, 1% and 1.5% by volume) of micro steel fibres and strength tests were conducted to optimise the fibre content. The strength degradation of the SCC with optimum Alccofine and fibre content exposed to alkaline, chloride and sulphate solutions was also studied.


2019 ◽  
Vol 199 ◽  
pp. 369-384 ◽  
Author(s):  
Ali Hendi ◽  
Davood Mostofinejad ◽  
Arash Sedaghatdoost ◽  
Mehdi Zohrabi ◽  
Navid Naeimi ◽  
...  

This paper aims to investigate the influence of alkaline activators solution i.e, Na2SiO3 / NaOH on compressive strength of geopolymer concrete mixed with Ground Granulated Blast furnace slag (GGBS) for constant molarity 8 M. The ratio of alkali to binder ratio is taken as 0.5 and the ratio of Na2SiO3 / NaOH is 2.5. The geopolymer mix is based on pervious sutdies. As per Indian standard size moulds for the cube, cylinder and prism are cast, cured and tested.The specimens were tested for fresh concrete properties such as slump cone test and hardened properties such as compressive strength for cubes, split tensile strength for cylinders and flexural strength for prism different days of curing under ambient temperature. Also, a microstructural study is done by using Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX) for the tested sample. It is found from the test results that, with the aid of alumino-silicate solution, early strength is achieved by geopolymer concrete within 7 days under ambient condition due to the presence of ground granulated slag.


Sign in / Sign up

Export Citation Format

Share Document