scholarly journals Effect of Na2SiO3/Naoh on the Compressive Strength of Inorganic Polymer Concrete Mixed with Ground Granulated Blast Furnace Slag (GGBS) At Ambient Condition

This paper aims to investigate the influence of alkaline activators solution i.e, Na2SiO3 / NaOH on compressive strength of geopolymer concrete mixed with Ground Granulated Blast furnace slag (GGBS) for constant molarity 8 M. The ratio of alkali to binder ratio is taken as 0.5 and the ratio of Na2SiO3 / NaOH is 2.5. The geopolymer mix is based on pervious sutdies. As per Indian standard size moulds for the cube, cylinder and prism are cast, cured and tested.The specimens were tested for fresh concrete properties such as slump cone test and hardened properties such as compressive strength for cubes, split tensile strength for cylinders and flexural strength for prism different days of curing under ambient temperature. Also, a microstructural study is done by using Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX) for the tested sample. It is found from the test results that, with the aid of alumino-silicate solution, early strength is achieved by geopolymer concrete within 7 days under ambient condition due to the presence of ground granulated slag.

Author(s):  
Ashita Singh ◽  
Sudhir Singh Bhadauria ◽  
Manish Mudgal ◽  
Suresh Singh Kushwah

Use of Ordinary Portland cement contributes to environmental deterioration by releasing enormous quantity of CO2.To reduce use of cement, this research focuses on preparation of solely ground granulated blast furnace slag based geopolymer binder, activated by a combination of sodium hydroxide and sodium metasilicate cured under ambient temperature at 27°C. Engineering properties of geopolymer binder are evaluated and compared with conventional cement to assess its suitability as a binder for making geopolymer concrete. Compressive strength, flexure strength and split tensile strength are determined for geopolymer concrete. Microstructural analysis of geopolymer is performed by XRD, FTIR, FESEM and EDAX tests. The concentration of alkali activators is optimized by trials in laboratory and maximum compressive, flexural and split tensile strength of 44.07 MPa, 5.60 MPa and 4.39 MPa respectively, is obtained for geopolymer concrete at 2M concentration of sodium hydroxide solution with ratio of sodium metasilicate to sodium hydroxide taken as 2.0


2018 ◽  
Vol 7 (1) ◽  
pp. 19-23
Author(s):  
S. Thirupathiraj .

Cement is the core content for the concrete mix. Manufacturing of cement causes CO2 emission which leads to the pollution, health and environmental problems like global warming to control over the adverse effect we can prefer geopolymer concrete which is not a cement concrete. Factory wastes such as fly ash, ground granulated blast furnace slag (GGBS), silica fume and Metakaolin can be used as alternate for cement. This study mainly focus on the ratio of fly ash and ground granulated blast furnace slag (GGBS) for optimum levels which nearly matches the cement concrete properties. This study involves the various tests like slump flow, compression testing, split tensile strength and flexural strength of self-compacting geopolymer concrete. Self-compacting concrete is a highly flowable concrete that spreads into the form without the need of mechanical vibration. Self-compacting concrete is a non-segregating concrete that is placed by means of its own weight. The advantages include improved constructability, Labour reduction, bond to steel, Flow into complex forms, reduced equipment wear etc. The aim of this study is to achieve an optimum self-compacting concrete geopolymer concrete mix proportion using fly ash and ground granulated blast furnace slag (GGBS). Then the study will be further extended by investigating the durability properties of self-compacting geopolymer concrete.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1279
Author(s):  
Sundaravadivelu Karthik ◽  
Kaliyaperumal Saravana Raja Mohan

In recent decades, geopolymer concrete (GPC) has been extensively researched as a potential substitute sustainable building material that may reduce CO2 emissions due to its utilization of industrial by-products. Fly ash (FA) and ground-granulated blast-furnace slag (GGBFS) are preferred geopolymer raw materials due to their obtainability and high alumina and silica concentrations. GGBFS-FA based GPC offers a clean and sustainable development technology alternative. In this study, the Taguchi method was used to optimize the mixed proportions of geopolymer concrete to achieve desired strength criteria. Four factors and four levels were considered: binder content, including four combinations of FA and GGFBS dosage, dosage of superplasticizer (0.5, 1.0, 1.5 and 2%), Na2SiO3/NaOH ratio (1.5, 2.0, 2.5 and 3), and molarity (6, 8, 10 and 12). Using these ingredients and factors, the effect of compressive strength was examined. The Taguchi approach using an L16 orthogonal array was employed to find the optimum condition of every factor while limiting the number of experiments. The findings indicated that the optimum synthesis conditions for maximum compressive strength obtained from the binder comprised 45% of FA, 45% of GGBFS and 10% of silica fume, 1.5% dosage of superplasticizer, Na2SiO3/NaOH ratio = 1.5, and 12 molar contents.


2020 ◽  
Vol 26 (4) ◽  
pp. 477-481
Author(s):  
Parthiban KATHIRVEL ◽  
Murali GUNASEKARAN ◽  
Sreenath SREEKUMARAN ◽  
Arathi KRISHNA

The study on the characteristics of geopolymer concrete (GPC) is of ultimate significance to instill assurance in builders and engineers. Abundant available literatures point towards the utilization of fly ash and ground granulated blast furnace slag (GGBFS) as source material in the production of GPC with little on other materials. India produces nearly 350 MMT of sugarcane for the production of sugar, which lies second only to Brazil in the annual production, the disposal of the bagasse creates an environmental issue needs to be effectively utilized. Hence, this work was intended to investigate the effect of utilizing sugarcane bagasse ash (SCBA) as a source material in the production of geopolymer mixes. The fresh (consistency, setting time, soundness and flow), hardened (density, compressive strength, expansion and pH) and microstructural properties (X-ray diffraction) of the tested mixes were asessed. The results infer that 20 % replacement level of GGBFS with SCBA produces superior compressive strength and all other results were within the permissible limits even at 40 % replacement level.


2017 ◽  
Vol 68 (6) ◽  
pp. 1182-1187
Author(s):  
Ilenuta Severin ◽  
Maria Vlad

This article presents the influence of the properties of the materials in the geopolymeric mixture, ground granulated blast furnace slag (GGBFS) + wheat straw ash (WSA) + uncalcined red mud (RMu), and ground granulated blast furnace slag + wheat straw ash + calcined red mud (RMc), over the microstructure and mechanical properties of the synthesised geopolymers. The activation solutions used were a NaOH solution with 8M concentration, and a solution realised from 50%wt NaOH and 50%wt Na2SiO3. The samples were analysed: from the microstructural point of view through SEM microscopy; the chemical composition was determined through EDX analysis; and the compressive strength tests was done for samples tested at 7 and 28 days, respectively. The SEM micrographies of the geopolymers have highlighted a complex structure and an variable compressive strength. Compressive strength varied from 24 MPa in the case of the same recipe obtained from 70% of GGBFS + 25% WSA +5% RMu, alkaline activated with NaOH 8M (7 days testing) to 85 MPa in the case of the recipe but replacing RMu with RMc with calcined red mud, alkaline activated with the 50%wt NaOH and 50%wt Na2SiO3 solution (28 days testing). This variation in the sense of the rise in compressive strength can be attributed to the difference in reactivity of the materials used in the recipes, the curing period, the geopolymers structure, and the presence of a lower or higher rate of pores, as well as the alkalinity and the nature of the activation solutions used.


2015 ◽  
Vol 16 (SE) ◽  
pp. 509-517
Author(s):  
Fatemeh Sayyahi ◽  
Hamid Shirzadi

 In this study, the properties of concrete with different amounts of Ground Granulated Blast-Furnace Slag (GGBFS) has been studied. In another part, the test deals to assess the properties of concrete containing GGBFS with micro-SiO2. The results show that the slag has pozzolan properties and its use up to 20% in the concrete, has no harmful effect on concrete properties. The simultaneous use of micro-SiO2 with blast furnace slag have little effect, as well as micro-SiO2 covers the defects caused by the use of slag. The results indicate that the use of micro-SiO2 and slag has good effects on the strength of concrete up to a certain age, so that its compressive strength is increased. Water-cement ratio was 0.42 and 12.5 mm for maximum size of aggregate and cement content in concrete was 425 kg per cubic meter. Compressive strength of concrete samples was measured at ages 7, 28, 56 and 90-day and flexural and tensile strength and water absorption after 28-day and 90 days also was measured.


Sign in / Sign up

Export Citation Format

Share Document