scholarly journals Accounting for year effects and sampling error in temporal analyses of population and biodiversity change - Response to Seibold et al. 2019 “Arthropod decline in grasslands and forests is associated with landscape-level drivers”

2020 ◽  
Author(s):  
Gergana N. Daskalova ◽  
Isla Heather Myers-Smith ◽  
Albert B Phillimore

An accumulating number of studies are reporting severe biomass, abundance and/or species richness declines of insects (Hallmann et al., 2017; Lister & Garcia, 2018; Seibold et al., 2019; Sánchez-Bayo & Wyckhuys, 2019). Collectively these studies aim to quantify the net change in invertebrate populations and/or community composition over time and to establish whether such changes can be attributed to anthropogenic drivers (Macgregor, Williams, Bell, & Thomas, 2019; Saunders, Janes, & O’Hanlon, 2019; Thomas, Jones, & Hartley, 2019; Montgomery et al., 2020; van Klink et al., 2020). Seibold et al. 2019 analysed a dataset of arthropod biomass, abundance and species richness from forest and grassland plots in a region of Germany and report significant declines of up to 78% over the time period of 2008 to 2018 (Seibold et al., 2019). However, their analysis did not account for the confounding effects of temporal pseudoreplication of observations from the same years. We show that simply by including a year random effect in the statistical models and thereby accounting for the common conditions experienced by observations from proximal sites in the same years, four of the five reported declines become non-significant out of six tests overall. To place their estimated effect sizes and those of other recent studies of insect declines in a broader geographic context, we analysed invertebrate biomass, abundance and species richness over time from 640 time series from 1167 sites around the world. We found that the average trend across the terrestrial and freshwater realms was not significantly distinguishable from no net change. Shorter time series that are likely to be most affected by sampling error variance – such as those reported in Seibold et al. 2019 – yielded the most extreme estimates of decline or increase. We suggest that the uncritical media uptake of extreme negative trends from short time series may be serving to exaggerate the speed of "insect Armageddon" and could eventually undermine public confidence in biodiversity research. We advocate that future research include all available data and use model structures that account for uncertainties to build a more robust understanding of biodiversity change during the Anthropocene and its variation among regions and taxa (Kunin, 2019; Saunders et al., 2019; Thomas et al., 2019; Didham et al., 2020; Dornelas & Daskalova, 2020).

Science ◽  
2019 ◽  
Vol 366 (6463) ◽  
pp. 339-345 ◽  
Author(s):  
Shane A. Blowes ◽  
Sarah R. Supp ◽  
Laura H. Antão ◽  
Amanda Bates ◽  
Helge Bruelheide ◽  
...  

Human activities are fundamentally altering biodiversity. Projections of declines at the global scale are contrasted by highly variable trends at local scales, suggesting that biodiversity change may be spatially structured. Here, we examined spatial variation in species richness and composition change using more than 50,000 biodiversity time series from 239 studies and found clear geographic variation in biodiversity change. Rapid compositional change is prevalent, with marine biomes exceeding and terrestrial biomes trailing the overall trend. Assemblage richness is not changing on average, although locations exhibiting increasing and decreasing trends of up to about 20% per year were found in some marine studies. At local scales, widespread compositional reorganization is most often decoupled from richness change, and biodiversity change is strongest and most variable in the oceans.


2014 ◽  
Vol 72 (1) ◽  
pp. 178-185 ◽  
Author(s):  
James T. Thorson ◽  
Allan C. Hicks ◽  
Richard D. Methot

AbstractBiological processes such as fishery selectivity, natural mortality, and somatic growth can vary over time, but it is challenging to estimate the magnitude of time-variation of demographic parameters in population dynamics models, particularly when using penalized-likelihood estimation approaches. Random-effect approaches can estimate the variance, but are computationally infeasible or not implemented for many models and software packages. We show that existing models and software based on penalized-likelihood can be used to calculate the Laplace approximation to the marginal likelihood of parameters representing variability over time, and specifically demonstrate this approach via application to Stock Synthesis. Using North Sea cod and Pacific hake models as case studies, we show that this method has little bias in estimating variances for simulated data. It also provides a similar estimate of variability in hake recruitment (log-SD = 1.43) to that obtained from Markov chain Monte Carlo (MCMC) methods (log-SD = 1.68), and the method estimates a non-trivial magnitude (log-SD = 0.07) of variation in growth for North Sea cod. We conclude by discussing the generality of the proposed method and by recommending future research regarding its performance relative to MCMC, particularly when estimating multiple variances simultaneously.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gian Maria Campedelli ◽  
Mihovil Bartulovic ◽  
Kathleen M. Carley

AbstractIn the last 20 years, terrorism has led to hundreds of thousands of deaths and massive economic, political, and humanitarian crises in several regions of the world. Using real-world data on attacks occurred in Afghanistan and Iraq from 2001 to 2018, we propose the use of temporal meta-graphs and deep learning to forecast future terrorist targets. Focusing on three event dimensions, i.e., employed weapons, deployed tactics and chosen targets, meta-graphs map the connections among temporally close attacks, capturing their operational similarities and dependencies. From these temporal meta-graphs, we derive 2-day-based time series that measure the centrality of each feature within each dimension over time. Formulating the problem in the context of the strategic behavior of terrorist actors, these multivariate temporal sequences are then utilized to learn what target types are at the highest risk of being chosen. The paper makes two contributions. First, it demonstrates that engineering the feature space via temporal meta-graphs produces richer knowledge than shallow time-series that only rely on frequency of feature occurrences. Second, the performed experiments reveal that bi-directional LSTM networks achieve superior forecasting performance compared to other algorithms, calling for future research aiming at fully discovering the potential of artificial intelligence to counter terrorist violence.


2019 ◽  
Vol 44 (1) ◽  
pp. 229-253 ◽  
Author(s):  
Amanda L. Stronza ◽  
Carter A. Hunt ◽  
Lee A. Fitzgerald

Ecotourism originated in the 1980s, at the dawn of sustainable development, as a way to channel tourism revenues into conservation and development. Despite the “win-win” idea, scholars and practitioners debate the meaning and merits of ecotourism. We conducted a review of 30 years of ecotourism research, looking for empirical evidence of successes and failures. We found the following trends: Ecotourism is often conflated with outdoor recreation and other forms of conventional tourism; impact studies tend to focus on either ecological or social impacts, but rarely both; and research tends to lack time series data, precluding authors from discerning effects over time, either on conservation, levels of biodiversity, ecosystem integrity, local governance, or other indicators. Given increasing pressures on wild lands and wildlife, we see a need to add rigor to analyses of ecotourism. We provide suggestions for future research and offer a framework for study design and issues of measurement and scaling.


2019 ◽  
Vol 53 (1) ◽  
pp. 79-83
Author(s):  
Kim Quaile Hill

ABSTRACTA growing body of research investigates the factors that enhance the research productivity and creativity of political scientists. This work provides a foundation for future research, but it has not addressed some of the most promising causal hypotheses in the general scientific literature on this topic. This article explicates the latter hypotheses, a typology of scientific career paths that distinguishes how scientific careers vary over time with respect to creative ambitions and achievements, and a research agenda based on the preceding components for investigation of the publication success of political scientists.


2021 ◽  
pp. 194016122110252
Author(s):  
Sebastián Valenzuela ◽  
Daniel Halpern ◽  
Felipe Araneda

Despite widespread concern, research on the consequences of misinformation on people's attitudes is surprisingly scant. To fill in this gap, the current study examines the long-term relationship between misinformation and trust in the news media. Based on the reinforcing spirals model, we analyzed data from a three-wave panel survey collected in Chile between 2017 and 2019. We found a weak, over-time relationship between misinformation and media skepticism. Specifically, initial beliefs on factually dubious information were negatively correlated with subsequent levels of trust in the news media. Lower trust in the media, in turn, was related over time to higher levels of misinformation. However, we found no evidence of a reverse, parallel process where media trust shielded users against misinformation, further reinforcing trust in the news media. The lack of evidence of a downward spiral suggests that the corrosive effects of misinformation on attitudes toward the news media are less serious than originally suggested. We close with a discussion of directions for future research.


The Condor ◽  
2021 ◽  
Author(s):  
Kyle D Kittelberger ◽  
Montague H C Neate-Clegg ◽  
Evan R Buechley ◽  
Çağan Hakkı Şekercioğlu

Abstract Tropical mountains are global hotspots for birdlife. However, there is a dearth of baseline avifaunal data along elevational gradients, particularly in Africa, limiting our ability to observe and assess changes over time in tropical montane avian communities. In this study, we undertook a multi-year assessment of understory birds along a 1,750 m elevational gradient (1,430–3,186 m) in an Afrotropical moist evergreen montane forest within Ethiopia’s Bale Mountains. Analyzing 6 years of systematic bird-banding data from 5 sites, we describe the patterns of species richness, abundance, community composition, and demographic rates over space and time. We found bimodal patterns in observed and estimated species richness across the elevational gradient (peaking at 1,430 and 2,388 m), although no sites reached asymptotic species richness throughout the study. Species turnover was high across the gradient, though forested sites at mid-elevations resembled each other in species composition. We found significant variation across sites in bird abundance in some of the dietary and habitat guilds. However, we did not find any significant trends in species richness or guild abundances over time. For the majority of analyzed species, capture rates did not change over time and there were no changes in species’ mean elevations. Population growth rates, recruitment rates, and apparent survival rates averaged 1.02, 0.52, and 0.51 respectively, and there were no elevational patterns in demographic rates. This study establishes a multi-year baseline for Afrotropical birds along an elevational gradient in an under-studied international biodiversity hotspot. These data will be critical in assessing the long-term responses of tropical montane birdlife to climate change and habitat degradation.


2021 ◽  
pp. 1-11
Author(s):  
Charles Salame ◽  
Inti Gonzalez ◽  
Rodrigo Gomez-Fell ◽  
Ricardo Jaña ◽  
Jorge Arigony-Neto

Abstract This paper provides the first evidence for sea-ice formation in the Cordillera Darwin (CD) fjords in southern Chile, which is farther north than sea ice has previously been reported for the Southern Hemisphere. Initially observed from a passenger plane in September 2015, the presence of sea ice was then confirmed by aerial reconnaissance and subsequently identified in satellite imagery. A time series of Sentinel-1 and Landsat-8 images during austral winter 2015 was used to examine the chronology of sea-ice formation in the Cuevas fjord. A longer time series of imagery across the CD was analyzed from 2000 to 2017 and revealed that sea ice had formed in each of the 13 fjords during at least one winter and was present in some fjords during a majority of the years. Sea ice is more common in the northern end of the CD, compared to the south where sea ice is not typically present. Is suggested that surface freshening from melting glaciers and high precipitation reduces surface salinity and promotes sea-ice formation within the semi-enclosed fjord system during prolonged periods of cold air temperatures. This is a unique set of initial observations that identify questions for future research in this remote area.


Sign in / Sign up

Export Citation Format

Share Document