scholarly journals BIO STIMULATORY INFLUENCE OF COMPOST AND INORGANIC FERTILIZER ON BACTERIAL DEGRADATION OF SPENT ENGINE OIL CONTAMINATED SOIL

2020 ◽  
Vol 4 (3) ◽  
pp. 624-630
Author(s):  
A. Adeleye ◽  
Victor O. Onokebhagbe ◽  
A. Akindiya ◽  
M. E. Nkereuwem

The harmful effects of spent engine oil on aquatic and terrestrial ecosystems have been well established in literature. This study was conducted to assess the bio stimulatory influence of amendments; compost and inorganic fertilizer on bacterial degradation of spent engine oil contaminated soil.  500 g of unpolluted soil was collected and artificially contaminated with 5, 10 and 15% (v/w) spent engine oil. The experiment was laid out in a completely randomized design. Each amendment (50 g) was subsequently mixed thoroughly with the spent engine oil contaminated soil at varying levels except nine experimental bottles used as control. Incubation study was carried out and lasted for four weeks. Estimation of total petroleum hydrocarbon, pH, electrical conductivity, temperature and bacterial population density was done within two weeks interval during the incubation study. Results obtained indicate that compost significantly enhanced total petroleum hydrocarbon reduction by 87% while inorganic fertilizer facilitated 62% total petroleum hydrocarbon reduction on 5% spent engine oil contamination level respectively. Estimation of hydrocarbon utilizing bacteria on 5, 10 and 15% spent engine oil contaminated soil indicated that compost enhanced higher hydrocarbon utilizing bacteria thereby influencing bacterial degradation than those stimulated with inorganic fertilizer. pH remained in the range of alkalinity (7.8 and 8.06) for compost and 6.2 and 6.7 for inorganic fertilizer. The potential that compost recorded in influencing bacterial degradation of spent engine oil contaminated soil in this study has made it a good bio stimulant for the bioremediation of hydrocarbon polluted environments.

Author(s):  
A. A. Ibiene ◽  
O. Aleruchi ◽  
L.C. Nnodim ◽  
R. U. Ihunwo

Studies were carried out to investigate the bioremediation potential of pig dung in a soil contaminated with spent engine oil. Soil samples were obtained from the Ofrima complex, University of Port Harcourt. The soil samples were contaminated with various concentrations (50 ml and 100 ml) of spent engine oil and allowed for 21 days for proper exposure, mimicking natural spill. This was followed by the addition of the pig dung. The experimental setup was labeled sample A (1 kg soil + 100 g pig dung + 50 ml spent engine oil) and sample B (1 kg soil + 100 g pig dung + 100 ml spent engine oil). The physicochemical parameters and the microbiological analysis were done using standard methods. The total petroleum hydrocarbon was analyzed using gas chromatographic methods. Analyses were carried out at 14 days intervals for 28 days. The physicochemical parameter results showed a reduction in pH values in the contaminated soil samples, ranging from 6.21 - 6.65 in sample A and 6.57 - 6.87 in sample B. Temperature values were constant at 230C from day 1 to day 14 in sample A and increased at day 28 to 24 0C, also for sample B, the temperature was constant at 230C from day 1 to day14 and increased at day 28 to 26 0C. The amount of heavy metal (Lead) content decreased from 4.3645 - 1.93676 (mg/kg) and 6.18361 - 3.89654 (mg/kg) for samples A and B, respectively. There was also a significant reduction in the amount of Total Petroleum Hydrocarbon, from 16631.86 - 3280.83 mg/kg for sample A and 18464.73 - 6784.60 mg/kg for sample B. The THB counts for samples A and B ranged from 7.73 - 7.91 and 7.05-8.20 (Log cfu/g), respectively. The fungal counts ranged from 3.99–4.58 and 5.12 - 7.93 (Log cfu/g) for samples A and B respectively. HUB counts ranged from 4.52–5.09 and 4.93- 5.55 (Log cfu/g) for samples A and B, respectively. The HUF counts ranged from 4.12 - 5.49 and 4.13 - 4.70 (Log cfu/g) for samples A and B, respectively. The results clearly showed that microorganisms capable of utilizing total petroleum hydrocarbon were present, also the pig dung showed both bio-stimulation and bio-augmentation tendency to attract high microbial load which supported the bioremediation of the spent engine oil contaminated soil.


Author(s):  
D. N. Ogbonna ◽  
S. A. Ngah ◽  
R. N. Okparanma ◽  
O. Ule ◽  
R. R. Nrior

Aim: The aim of the study was to assess Percentage Bioremediation of Spent Mushroom Substrate (SMS) and Mucor racemosus in hydrocarbon contaminated soil Place and Duration of Study: A portion of Rivers State University demonstration farmland in Nkpolu-Oroworukwo, Mile 3 Diobu area of Port Harcourt, Rivers State was used for this study. The piece of land is situated at Longitude 4°48’18.50’’N and Latitude 6o58’39.12’’E measuring 5.4864 m x 5.1816 m with a total area of 28.4283 m2. Bioremediation monitoring lasted for 56 days, analysis carried out weekly (per 7 days’ interval). Methodology: Five (5) experimental plots employing the Randomized Block Design were used each having dimensions of 100 x 50 x 30 cm (Length x Breadth x Height) = 150,000cm3. Baseline study of the uncontaminated and the deliberately contaminated agricultural soil was investigated for its microbiota and physico-chemical properties. Two of these plots were designated as pristine (Unpolluted soil) (CTRL 1) and crude oil contaminated soil without nutrient organics and bioaugmenting microbes (CTRL 2); these two serve as controls. Each of the experimental plots, except the control (CTRL 1), was contaminated with 2500 cm3 (2122.25 g) of crude oil giving initial Total Petroleum Hydrocarbon (TPH) value of 8729.00 mg/kg. The crude oil polluted soil in Plot 3 was further treated with 750 ml of Mucor racemosus broth (CS+Muc), Plot 4 was treated with 3000 g of Spent Mushroom Substrate (CS+SMS) while plot 5 was treated with the combination of both (CS+Muc+SMS). The plots were left for 7 days to ensure even distribution and soil-oil bonding. Sampling was done at seven-day interval (Day 1, 7, 14, 21, 28, 35, 42, 49, 56).  Physicochemical parameters monitored were pH, Temperature, Nitrogen, Phosphorus, Potassium, and Total Petroleum Hydrocarbon (TPH) throughout the experimental period. Microbial parameters monitored were Total Heterotrophic Bacteria (THB), Total Heterotrophic Fungi (THF), Hydrocarbon Utilizing Bacteria (HUB) and Hydrocarbon Utilizing Fungi (HUF). Percentage (%) Bioremediation was estimated from percentage (%) reduction of Total Petroleum Hydrocarbon (TPH) from day 1 to day 56 in relation to control plots.  Net % Bioremediation were also assessed to ascertain the actual potential of treatment agents singly or combined. Results: Total Heterotrophic Bacteria (THB) (CFU/g) recorded on day 7 and day 56 of the bioremediation were; day 7; CTRL 1 – US (1.07 x109), CTRL- CS (5.4 x108), CS+Muc (3.0 x108), CS+SMS (4.6 x108) and CS+Muc+SMS (5.0 x108). On day 56, data obtained were CTRL 1 –US (9.4 x108), CTRL 2 –CS (7.2 x109), CS+Muc (3.7 x108), CS+SMS (8.1x108) and CS+Muc+SMS (6.8 x108). The increase in number in the treated plots is a depiction of an increase in activity of the organism and the stimulating effect of bio-organics SMS while the untreated plot CTRL 1-US showed decrease in population at day 56. Similar trend showed for Total Heterotrophic Fungi. Generally, it was observed that the highest growth/ count was recorded at the 7th and 8th week (day 42 or day 49), at the 9th week there was an observable decrease; probably due to depletion of nutrients and other factors such as rainfall and seepage. The Net Percentage Hydrocarbon Utilizing Bacteria and Fungi (Net %HUB and Net %HUF) were highest in Crude Oil contaminated plot treated with Spent Mushroom Substrate (SMS) singly; that is (CS+SMS) (11.02% and 12.07%) and lowest in the uncontaminated soil – Control (CTRL 1 –US) (5.41% and 9.26%) respectively. The trend in decreasing order of Net % Hydrocarbon Utilizing Bacteria were as follows: CS+SMS (11.02%) > CS+Muc+SMS (10.14%) > CS+Muc (9.43%) > CTRL 2 –CS (8.1%) > CTRL 1 –US (5.41%) while Net % Hydrocarbon Utilizing Fungi followed similar trend and were: CS+SMS (12.07%) > CS+Muc+SMS (11.76%) = CS+Muc (11.76%) > CTRL 2 –CS (11.05%) > CTRL 1 –US (9.26%). Evaluation of Amount of Crude Oil or Hydrocarbon remediated and Net %Bioremediation revealed Crude Oil contaminated plot augmented with Mucor racemosus broth singly (CS+Muc) as having the highest bioremediation potential while the least is the untreated soil. The trend is as follows:  CS+Muc (8599.19 mg/kg; 33.93%) > CS+Muc+SMS (8298.95 mg/kg; 32.74%) > CS+SMS (8197.03 mg/kg; 32.34%) > CTRL 2 –CS (166.54 mg/kg; 0.66%) > CTRL 1 –US (85.48 mg/kg; 0.34%) Conclusion: This shows that a single nutrient substrate or augmenting microorganism applied appropriately may have a more positive result, that is; higher bioremediation potential than combined or multiple mixed treatments. It was further observed that microbial counts decreased with time in treatments with augmenting organisms alone but increased considerably in treatments supplement with organics having its peak on the 49th day.   It is therefore recommended that bioremediation of crude oil-polluted soil using bio-augmenting microorganism should be applied appropriately noting the volume: area ratio and be supplemented with efficient nutrient organics after every 49-day interval.


Agro-Science ◽  
2021 ◽  
Vol 20 (3) ◽  
pp. 80-90
Author(s):  
A.O. Adeleye ◽  
M.B. Yerima ◽  
M.E. Nkereuwem ◽  
V.O. Onokebhagbe ◽  
I.S. Sadiq ◽  
...  

The study assessed the removal of total petroleum hydrocarbon (TPH) and polyaromatic hydrocarbons (PAHs) from spent engine oil (SEO) contaminated soil through bioenhancement of bacteria isolated from SEO polluted soil. Sterilized soil was subjected to a three level of SEO contamination before the addition of sterilized biostimulants including powdered cow dung (CD), powdered cocoa pod husk (CPH) and compost (made from fresh CPH and CD). Bacterial inoculum being Staphylococcus aureus and Bacillus cereus co-culture (150 mL) was added to the mixture in polyethylene bags. It was a factorial experiment that was laid out in a completely randomized design (CRD). The TPH and PAHs were estimated in the first day, fifth week and the tenth week that the room incubation lasted. Results generated from the influence of biostimulants on TPH and PAHs degradation potential of the bacterial co-culture showed that degradation of the hydrocarbon contents was significantly enhanced (p < 0.05). At the tenth week, compost enhanced the most TPH reductions (315 and 380 mg kg–1) compared with other biostimulants on 5% and 15% SEO contamination levels, respectively. Compost equally enhanced the most PAHs reductions (48.8, 39.6 and 94.6 mg kg–1) compared with other biostimulants on 5%, 10% and 15% SEO contamination levels respectively. However, the quantity of SEO contents degraded was significantly higher in the bioaugmented and biostimulated soil samples compared with the control employed. The technology adopted in this study can be effectively employed for the bioremediation of petroleum hydrocarbon related pollution.


2021 ◽  
Vol 25 (5) ◽  
pp. 877-885
Author(s):  
A.J. Odebode ◽  
K.L. Njoku ◽  
A.A. Adesuyi ◽  
M.O. Akinola

This study was carried out to investigate the phytotoxicity of spent engine oil and palm kernel sludge on seed germination, seedling early growth and survival of sunflower (Helianthus annuus L) and its phytoremediating potential. 8.0 kg topsoil mixed with 2, 4, 6, 8 and 10% (w/v) of spent engine oil and palm kernel sludge, while the control was not mixed with spent oil and sludge (0%). The seeds were sown on these soils and monitored daily. Parameters taken were; plant height, leaf number and stem girth. The result showed that spent engine oil treated plants adversely affected growth compared to palm kernel sludge plants and control which performed better. For plant height, the mean stem girth for control at 2nd week was 0.40±0.05 mm, spent engine oil was 5.96±0.97 palm kernel oil effluent was 14.73±1.16 and at 12th week, control was 1.30±0.05 while for SEO the plant had withered and 124.6±9.02 for POE. Number of leaves at the 12th week was 26.00±2.08 in the control, 8.66±0.66, for spent engine oil at 4%, while for palm oil effluent it was 27.66±0.66, at 4%, concentration respectively. Stem girth at 2 weeks for spent engine oil was 0.19±0.05 at 2%, 0.43±0.03 for palm kernel oil effluent and at the 12th week of planting at 10% concentration was 1.63±0.08 for palm kernel oil effluent, and all plants had withered off for spent engine oil at same concentration at the 12th week. Also, spent engine oil at all concentrations delayed the germination of Helianthus annuus by 2days compared to control. Comparison analysis test showed that growth in untreated plants were significantly higher (p>0.05) than spent oil and palm kernel sludge treated plants. Similar result was observed for leaf number and stem girth which had higher mean value in palm kernel sludge and control compared to spent oil. Sunflower grown in 8% and 10% palm kernel sludge contaminated soil also flowered eight days earlier than control plants, while spent oil treated plant did not. The result shows that sunflower cannot tolerate high (4%, 6%, 8% and 10%) concentrations of spent engine oil in soil compared to palm oil effluent. Therefore, spent engine oil should be properly disposed because of its adverse effect on the growth and yield of sunflower.


2020 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Olajumoke Oke Fayinminnu

Oil pollution especially Spent Lubricating Oil is a wide environmental problem in Nigeria. It constitutes potential toxic effects on soil, flora, fauna and humans and also making the environment unsightly. This study assessed the potential of kenaf plant as a phytoremediator grown in spent oil polluted soil for a period of 84 days (12 weeks). Pot experiment was conducted in the Nursery site of the Moist Forest Research Station, Forestry Research Institute of Nigeria (FRIN), Ibadan, Oyo State, Nigeria. The treatments: amended (with organic manure) and unamended (without organic manure) soils and three pollution levels (0, 3 and 6%) of spent engine oil, each filled in eight-liter plastic pots with 6 kg soil. Growth parameters: plant height, stem diameter and number of leaves were collected and Total Petroleum Hydrocarbon (TPH) in soil was determined. Data were analyzed using descriptive statistics and ANOVA. Results at 12 weeks (84 days) showed amended (control 0%) treatment having highest plant height (112.17 cm), stem diameter (8.92 cm) and number of leaves (178.43), while 6% unamended level of pollution had the lowest plant height (26.78 cm), stem height (1.62 cm) and number of leaves (8.06). Amended soil had the highest total percentage reduction of TPH (75.90, 90.05 and 90.30%), when compared with unamended soil with lowest values (76.88, 85.18 and 82.36%) at 0, 3 and 6 pollution levels, respectively. Reduction of TPH in the phytoremediation process was in this order of pollution levels 6%> 3%> 0%. This study revealed effectiveness of kenaf with organic amendment in remediating Total Petroleum Hydrocarbon in oil polluted soil, hence a good potential phytoremediator.


Author(s):  
Mariana MARINESCU ◽  
Anca LACATUSU ◽  
Eugenia GAMENT ◽  
Georgiana PLOPEANU ◽  
Vera CARABULEA

Bioremediation of crude oil contaminated soil is an effective process to clean petroleum pollutants from the environment. Crude oil bioremediation of soils is limited by the bacteria activity in degrading the spills hydrocarbons. Native crude oil degrading bacteria were isolated from different crude oil polluted soils. The isolated bacteria belong to the genera Pseudomonas, Mycobacterium, Arthrobacter and Bacillus. A natural biodegradable product and bacterial inoculum were used for total petroleum hydrocarbon (TPH) removal from an artificial polluted soil. For soil polluted with 5% crude oil, the bacterial top, including those placed in the soil by inoculation was 30 days after impact, respectively 7 days after inoculum application, while in soil polluted with 10% crude oil,  multiplication top of bacteria was observed in the determination made at 45 days after impact and 21 days after inoculum application, showing once again how necessary is for microorganisms habituation and adaptation to environment being a function of pollutant concentration. The microorganisms inoculated showed a slight adaptability in soil polluted with 5% crude oil, but complete inhibition in the first 30 days of experiment at 10% crude oil.


Sign in / Sign up

Export Citation Format

Share Document