scholarly journals PHASE METHODS OF GAS GENERATORS CONTROL HYDROGEN STORAGE AND SUPPLY SYSTEMS

2021 ◽  
Vol 6 (166) ◽  
pp. 146-150
Author(s):  
Y. Abramov ◽  
V. Kryvtsova ◽  
A. Mikhailyuk

Methods of control of technical condition of gas generators of systems of storage and supply of hydrogen based on use of their phase-frequency characteristics are considered. Methods of control of gas generators are divided into two groups depending on the mathematical models used to describe the operation of such gas generators. It is shown that when using as such a mathematical model the transfer function of the gas generator in the form of an inertial link, it is possible to implement control algorithms both by its phase-frequency characteristics and by its time constant. In the first case, the phase-frequency characteristic is measured at an a priori set frequency. In the second case, there is no such restriction. When using as a mathematical model of the gas generator the transfer function in the form of a fractional-rational function of the second order, the implementation of algorithms for its control can be carried out directly using the phase-frequency characteristics of the gas generator. With this implementation of algorithms for monitoring the technical condition of gas generators, the measurement of the values of their phase-frequency characteristics is carried out at several frequencies. This approach to the control of gas generators can increase the reliability of its results. All methods of monitoring the technical condition of gas generators of hydrogen storage and supply systems are focused on the use of tolerance criteria. The parameters of the tolerance criteria can be both the values of the time constants of gas generators of hydrogen storage and supply systems, and fixed values of the phase-frequency characteristics of such gas generators. In the latter case, control algorithms are implemented that cover the entire operating frequency range of gas generators.

2021 ◽  
Vol 1 (161) ◽  
pp. 284-289
Author(s):  
Y. Abramov ◽  
V. Kryvtsova ◽  
A. Mikhailyuk

Algorithms for the control of the technical mill of gas generators in the systems of protection and supply of water, as an element of the systems of fire prevention. Algorithms for monitoring the dynamic parameters of gas generators of gas generators to control the flow and transmitting test signals to two types - from the viewer of the linearly growing function, or from the viewer of the straightforward view. One hundred percent before such test signals are broken down direct and indirect methods of control of the technical mill of gas generators in the systems of recovery and supply of water. It is shown that in the implementation of direct methods of control, no middle value of the parameters in the gas generators begins. To such parameters, the transmission efficiency is applied and continuously for an hour, as they characterize the dynamic power of gas generators in the systems of securing and supplying water. When implementing indirect methods of control, the integral characteristics of gas generators begin. In the quality of the information parameters, which are used to formulate the control algorithms, vibrating the vice in the empty gas generator of any average value. The values ​​of these parameters are changed at two april given time of the hour, or at april given interval hour. In the quality of the criteria for the result of the control of the technical mill of the gas generators, the tolerance criteria are determined. It is shown that the priority in the vibration of the algorithm for the control of the technical mill of gas generators in the systems of gas generators and the supply of gas generators to the algorithm, which is based on the test signal in the form of a straight-flow gas generator. It should be considered that, when implementing such an algorithm, the control of the technical mill of gas generators in the systems of ensuring that the supply of vitality is kept to a minimum is minimal.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4060
Author(s):  
Artur Kozłowski ◽  
Łukasz Bołoz

This article discusses the work that resulted in the development of two battery-powered self-propelled electric mining machines intended for operation in the conditions of a Polish copper ore mine. Currently, the global mining industry is seeing a growing interest in battery-powered electric machines, which are replacing solutions powered by internal combustion engines. The cooperation of Mine Master, Łukasiewicz Research Network—Institute of Innovative Technologies EMAG and AGH University of Science and Technology allowed carrying out a number of works that resulted in the production of two completely new machines. In order to develop the requirements and assumptions for the designed battery-powered propulsion systems, underground tests of the existing combustion machines were carried out. Based on the results of these tests, power supply systems and control algorithms were developed and verified in a virtual environment. Next, a laboratory test stand for validating power supply systems and control algorithms was developed and constructed. The tests were aimed at checking all possible situations in which the battery gets discharged as a result of the machine’s ride or operation and when it is charged from the mine’s mains or with energy recovered during braking. Simulations of undesirable situations, such as fluctuations in the supply voltage or charging power limitation, were also carried out at the test stand. Positive test results were obtained. Finally, the power supply systems along with control algorithms were implemented and tested in the produced battery-powered machines during operational trials. The power systems and control algorithms are universal enough to be implemented in two different types of machines. Both machines were specially designed to substitute diesel machines in the conditions of a Polish ore mine. They are the lowest underground battery-powered drilling and bolting rigs with onboard chargers. The machines can also be charged by external fast battery chargers.


2012 ◽  
Vol 562-564 ◽  
pp. 1496-1500
Author(s):  
Qiang Li ◽  
Wei Chen ◽  
Ren He

To investigate the accuracy of modeling DC motor, the platform for measurement and calculation dynamic parameters is built by the Hardware-In-the-Loop(HIL) method based on dSPACE system. The running state of DC motor has to be changed with adjustment of PWM duty-cycle using ControlDesk software. Having got measurement and calculation parameters value of DC motor, we compare the test results with simulation value using the model of DC motor with cascade control in Matlab/Simulink software according to the classical mathematical model. It confirms the established model of DC motor accurately and reliability using new parameters, which provides the basis of more complex control algorithms and also indicates that the feasibility and generalization application value of measurement and calculation method for DC motor.


2021 ◽  
Vol 2 (143) ◽  
pp. 46-53
Author(s):  
Andrey V. Negovora ◽  
◽  
Makhmut M. Razyapov ◽  
Arseniy A. Kozeyev

Hot gas generators are used as a source of thermal energy for pre-start preparation of motor vehicles in cold climatic conditions. Their wide application is due to the high thermal power and safety. (Research purpose) The research purpose is in determining the possibilities of using thermoelectric modules to reduce the energy consumption of the battery by hot gas generators. (Materials and methods) Authors used research methods based on the application of standard techniques, while the object of research was the power supply system of a thermal energy source. (Results and discussion) Authors conducted research on ways and methods to reduce the electric consumption of a hot gas generator by recuperating thermal energy into electrical energy using thermoelectric generator modules. The thermoelectric converters installed on the heat pipe of the hot gas generator, due to the high temperature difference, will allow to obtain a high value of the electromotive force. Modeling of the nozzle in the software package of the Ansys three-dimensional modeling system showed that part of the heat energy goes through the surface of the heat pipe. The article proposes the use of a nozzle with a thermoelectric converter installed on the outer surface of the cylinder instead of a heat pipe. The article presents the mathematical model of an improved hot gas generator nozzle. (Conclusions) The use of a thermoelectric converter for the utilization of thermal energy and the replacement of energy losses of the battery, which feeds the hot gas generator, will reduce the internal power losses of the battery and increase the technical readiness of automotive equipment. The introduction of a comprehensive heat treatment system, which is intelligently and functionally linked to a remote monitoring system, will significantly increase the service life of the units most exposed to temperature influences.


2018 ◽  
Vol 170 ◽  
pp. 01010 ◽  
Author(s):  
Rustam Khayrullin ◽  
Pavel Ivanov

The mathematical model is considered for the formation and implementation of development strategies of the stock of control and measuring instruments (CMI) applied in construction and housing and communal services(HCS), and step-by-step control of efficiency target values of the stock. The model is based on a system of finite - difference equations describing the change of number of the CMI samples with different levels of technical perfection and technical condition at each planning interval. The model allows calculating the required number of CMI for procurement and repairs in the various groups for provide target values of efficiency indices at each planning interval. Controller is number of modern CMI samples for procurement and number of modern and obsolete faulty CMI samples for the repairs. The results of calculations are presented.


Sign in / Sign up

Export Citation Format

Share Document