scholarly journals Influence of Environmental and Genetic Factors on Proteomic Profiling of Outer Membrane Vesicles from Campylobacter jejuni

2019 ◽  
Vol 68 (2) ◽  
pp. 255-261 ◽  
Author(s):  
RENATA GODLEWSKA ◽  
JOANNA KLIM ◽  
JANUSZ DĘBSKI ◽  
AGNIESZKA WYSZYŃSKA ◽  
ANNA ŁASICA

The proteomes of outer membrane vesicles (OMVs) secreted by C. jejuni 81–176 strain, which was exposed to oxygen or antibiotic stress (polymyxin B), were characterized. We also assessed the OMVs production and their content in two mutated strains – ∆dsbI and ∆htrA. OMVs production was significantly increased under the polymyxin B stress and remained unaltered in all other variants. Interestingly, the qualitative load of OMVs was constant regardless of the stress conditions or genetic background. However, certain proteins exhibited notable quantitative changes, ranging from 4-fold decrease to 10-fold increase. Up- or downregulated proteins (e.g. major outer membrane protein porA, iron ABC transporter, serine protease- htrA, 60 kDa chaperonin-groL, enolase) represented various cell compartments (cytoplasm, periplasm, and membrane) and exhibited various functions; nevertheless, one common group was noted that consisted of components of flagellar apparatus, i.e., FlaA/B, FlgC/E, which were mostly upregulated. Some of these proteins are the putative substrates of DsbI protein. Further investigation of the regulation of C. jejuni OMVs composition and their role in virulence will allow a better understanding of the infectious process of C. jejuni.

2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Andreas Bauwens ◽  
Lisa Kunsmann ◽  
Helge Karch ◽  
Alexander Mellmann ◽  
Martina Bielaszewska

ABSTRACT Ciprofloxacin, meropenem, fosfomycin, and polymyxin B strongly increase production of outer membrane vesicles (OMVs) in Escherichia coli O104:H4 and O157:H7. Ciprofloxacin also upregulates OMV-associated Shiga toxin 2a, the major virulence factor of these pathogens, whereas the other antibiotics increase OMV production without the toxin. These two effects might worsen the clinical outcome of infections caused by Shiga toxin-producing E. coli. Our data support the existing recommendations to avoid antibiotics for treatment of these infections.


2018 ◽  
Vol 19 (8) ◽  
pp. 2356 ◽  
Author(s):  
Raad Jasim ◽  
Mei-Ling Han ◽  
Yan Zhu ◽  
Xiaohan Hu ◽  
Maytham Hussein ◽  
...  

Gram-negative bacteria produce outer membrane vesicles (OMVs) as delivery vehicles for nefarious bacterial cargo such as virulence factors, which are antibiotic resistance determinants. This study aimed to investigate the impact of polymyxin B treatment on the OMV lipidome from paired polymyxin-susceptible and -resistant Klebsiella pneumoniae isolates. K. pneumoniae ATCC 700721 was employed as a reference strain in addition to two clinical strains, K. pneumoniae FADDI-KP069 and K. pneumoniae BM3. Polymyxin B treatment of the polymyxin-susceptible strains resulted in a marked reduction in the glycerophospholipid, fatty acid, lysoglycerophosphate and sphingolipid content of their OMVs. Conversely, the polymyxin-resistant strains expressed OMVs richer in all of these lipid species, both intrinsically and increasingly under polymyxin treatment. The average diameter of the OMVs derived from the K. pneumoniae ATCC 700721 polymyxin-susceptible isolate, measured by dynamic light scattering measurements, was ~90.6 nm, whereas the average diameter of the OMVs isolated from the paired polymyxin-resistant isolate was ~141 nm. Polymyxin B treatment (2 mg/L) of the K. pneumoniae ATCC 700721 cells resulted in the production of OMVs with a larger average particle size in both the susceptible (average diameter ~124 nm) and resistant (average diameter ~154 nm) strains. In light of the above, we hypothesize that outer membrane remodelling associated with polymyxin resistance in K. pneumoniae may involve fortifying the membrane structure with increased glycerophospholipids, fatty acids, lysoglycerophosphates and sphingolipids. Putatively, these changes serve to make the outer membrane and OMVs more impervious to polymyxin attack.


PROTEOMICS ◽  
2007 ◽  
Vol 7 (20) ◽  
pp. 3821-3821
Author(s):  
Eun-Young Lee ◽  
Joo Young Bang ◽  
Gun Wook Park ◽  
Dong-Sic Choi ◽  
Ji Seoun Kang ◽  
...  

PROTEOMICS ◽  
2007 ◽  
Vol 7 (17) ◽  
pp. 3143-3153 ◽  
Author(s):  
Eun-Young Lee ◽  
Joo Young Bang ◽  
Gun Wook Park ◽  
Dong-Sic Choi ◽  
Ji Seoun Kang ◽  
...  

2014 ◽  
Vol 98 ◽  
pp. 90-98 ◽  
Author(s):  
Kyoung-Soon Jang ◽  
Michael J. Sweredoski ◽  
Robert L.J. Graham ◽  
Sonja Hess ◽  
William M. Clemons

2019 ◽  
Vol 20 (22) ◽  
pp. 5577 ◽  
Author(s):  
Justyna Roszkowiak ◽  
Paweł Jajor ◽  
Grzegorz Guła ◽  
Jerzy Gubernator ◽  
Andrzej Żak ◽  
...  

The virulence of bacterial outer membrane vesicles (OMVs) contributes to innate microbial defense. Limited data report their role in interspecies reactions. There are no data about the relevance of OMVs in bacterial-yeast communication. We hypothesized that model Moraxella catarrhalis OMVs may orchestrate the susceptibility of pathogenic bacteria and yeasts to cationic peptides (polymyxin B) and serum complement. Using growth kinetic curve and time-kill assay we found that OMVs protect Candida albicans against polymyxin B-dependent fungicidal action in combination with fluconazole. We showed that OMVs preserve the virulent filamentous phenotype of yeasts in the presence of both antifungal drugs. We demonstrated that bacteria including Haemophilus influenza, Acinetobacter baumannii, and Pseudomonas aeruginosa coincubated with OMVs are protected against membrane targeting agents. The high susceptibility of OMV-associated bacteria to polymyxin B excluded the direct way of protection, suggesting rather the fusion mechanisms. High-performance liquid chromatography-ultraviolet spectroscopy (HPLC-UV) and zeta-potential measurement revealed a high sequestration capacity (up to 95%) of OMVs against model cationic peptide accompanied by an increase in surface electrical charge. We presented the first experimental evidence that bacterial OMVs by sequestering of cationic peptides may protect pathogenic yeast against combined action of antifungal drugs. Our findings identify OMVs as important inter-kingdom players.


2016 ◽  
Vol 62 (8) ◽  
pp. 682-691 ◽  
Author(s):  
Esti Michael ◽  
Yeshayahu Nitzan ◽  
Yakov Langzam ◽  
Galia Luboshits ◽  
Rivka Cahan

Isolated toluene-degrading Pseudomonas stutzeri ST-9 bacteria were grown in a minimal medium containing toluene (100 mg·L−1) (MMT) or glucose (MMG) as the sole carbon source, with specific growth rates of 0.019 h−1and 0.042 h−1, respectively. Scanning (SEM) as well as transmission (TEM) electron microscope analyses showed that the bacterial cells grown to mid-log phase in the presence of toluene possess a plasmolysis space. TEM analysis revealed that bacterial cells that were grown in MMT were surrounded by an additional “material” with small vesicles in between. Membrane integrity was analyzed by leakage of 260 nm absorbing material and demonstrated only 7% and 8% leakage from cultures grown in MMT compared with MMG. X-ray microanalysis showed a 4.3-fold increase in Mg and a 3-fold increase in P in cells grown in MMT compared with cells grown in MMG. Fluorescence-activated cell sorting (FACS) analysis indicated that the permeability of the membrane to propidium iodide was 12.6% and 19.6% when the cultures were grown in MMG and MMT, respectively. The bacterial cell length increased by 8.5% ± 0.1% and 17% ± 2%, as measured using SEM images and FACS analysis, respectively. The results obtained in this research show that the presence of toluene led to morphology changes, such as plasmolysis, cell size, and formation of outer membrane vesicles. However, it does not cause significant damage to membrane integrity.


2006 ◽  
Vol 188 (15) ◽  
pp. 5385-5392 ◽  
Author(s):  
Amanda J. McBroom ◽  
Alexandra P. Johnson ◽  
Sreekanth Vemulapalli ◽  
Meta J. Kuehn

ABSTRACT It has been long noted that gram-negative bacteria produce outer membrane vesicles, and recent data demonstrate that vesicles released by pathogenic strains can transmit virulence factors to host cells. However, the mechanism of vesicle release has remained undetermined. This genetic study addresses whether these structures are merely a result of membrane instability or are formed by a more directed process. To elucidate the regulatory mechanisms and physiological basis of vesiculation, we conducted a screen in Escherichia coli to identify gene disruptions that caused vesicle over- or underproduction. Only a few low-vesiculation mutants and no null mutants were recovered, suggesting that vesiculation may be a fundamental characteristic of gram-negative bacterial growth. Gene disruptions were identified that caused differences in vesicle production ranging from a 5-fold decrease to a 200-fold increase relative to wild-type levels. These disruptions included loci governing outer membrane components and peptidoglycan synthesis as well as the σE cell envelope stress response. Mutations causing vesicle overproduction did not result in upregulation of the ompC gene encoding a major outer membrane protein. Detergent sensitivity, leakiness, and growth characteristics of the novel vesiculation mutant strains did not correlate with vesiculation levels, demonstrating that vesicle production is not predictive of envelope instability.


Sign in / Sign up

Export Citation Format

Share Document