scholarly journals DYNAMICS OF CHANGES IN ELECTRIC CONDUCTIVITY OF MARINE WATER UNDER INFLUENCE OF THE BIOTIC COMPONENT IN THE EXPERIMENTAL CONDITIONS

Author(s):  
O.A. Stepanova ◽  
◽  
P.V. Gaisky ◽  
1934 ◽  
Vol 7 (1) ◽  
pp. 18-22
Author(s):  
B. Dogadkin ◽  
W. Balandina

Abstract 1. Aqueous extracts of pale crepe, which were exposed to the radiation of a quartz lamp or which were masticated for a short time on cold mills, reduce slightly alkaline gold chloride solution with the formation of colloidal gold. 2. The maximum intensity of the gold reaction under the experimental conditions described lay within the limits of 20–30 minutes' exposure to radiation. 3. The maximum intensity for smoked sheets lies within the same range; however even before irradiation this rubber yields an extract which reduces gold chloride. 4. The electric conductivity of aqueous extracts increases continuously, and under the experimental conditions described began after 30 minutes of irradiation of the rubber. 5. The character of the variations in the intensity of the gold reaction and the electric conductivity of the extracts must be explained on the basis of corresponding concepts of the chemistry of changes in rubber during aging.


2007 ◽  
Vol 1038 ◽  
Author(s):  
Martiros Lorikyan

AbstractIn this report, phenomenon of acquisition of spontaneous electron conductivity (SEC) of porous CsBr is investigated and compared with that for porous CsI at the same experimental conditions.


Author(s):  
F. I. Grace ◽  
L. E. Murr

During the course of electron transmission investigations of the deformation structures associated with shock-loaded thin foil specimens of 70/30 brass, it was observed that in a number of instances preferential etching occurred along grain boundaries; and that the degree of etching appeared to depend upon the various experimental conditions prevailing during electropolishing. These included the electrolyte composition, the average current density, and the temperature in the vicinity of the specimen. In the specific case of 70/30 brass shock-loaded at pressures in the range 200-400 kilobars, the predominant mode of deformation was observed to be twin-type faults which in several cases exhibited preferential etching similar to that observed along grain boundaries. A novel feature of this particular phenomenon was that in certain cases, especially for twins located in the vicinity of the specimen edge, the etching or preferential electropolishing literally isolated these structures from the matrix.


Author(s):  
Nalin J. Unakar

The increased number of lysosomes as well as the close approximation of lysosomes to the Golgi apparatus in tissue under variety of experimental conditions is commonly observed. These observations suggest Golgi involvement in lysosomal production. The role of the Golgi apparatus in the production of lysosomes in mouse liver was studied by electron microscopy of liver following toxic injury by CCI4.


Author(s):  
N. J. Zaluzec

The ultimate sensitivity of microchemical analysis using x-ray emission rests in selecting those experimental conditions which will maximize the measured peak-to-background (P/B) ratio. This paper presents the results of calculations aimed at determining the influence of incident beam energy, detector/specimen geometry and specimen composition on the P/B ratio for ideally thin samples (i.e., the effects of scattering and absorption are considered negligible). As such it is assumed that the complications resulting from system peaks, bremsstrahlung fluorescence, electron tails and specimen contamination have been eliminated and that one needs only to consider the physics of the generation/emission process.The number of characteristic x-ray photons (Ip) emitted from a thin foil of thickness dt into the solid angle dΩ is given by the well-known equation


Author(s):  
V. Annamalai ◽  
L.E. Murr

Economical recovery of copper metal from leach liquors has been carried out by the simple process of cementing copper onto a suitable substrate metal, such as scrap-iron, since the 16th century. The process has, however, a major drawback of consuming more iron than stoichiometrically needed by the reaction.Therefore, many research groups started looking into the process more closely. Though it is accepted that the structural characteristics of the resultant copper deposit cause changes in reaction rates for various experimental conditions, not many systems have been systematically investigated. This paper examines the deposit structures and the kinetic data, and explains the correlations between them.A simple cementation cell along with rotating discs of pure iron (99.9%) were employed in this study to obtain the kinetic results The resultant copper deposits were studied in a Hitachi Perkin-Elmer HHS-2R scanning electron microscope operated at 25kV in the secondary electron emission mode.


Author(s):  
R. H. Morriss ◽  
J. D. C. Peng ◽  
C. D. Melvin

Although dynamical diffraction theory was modified for electrons by Bethe in 1928, relatively few calculations have been carried out because of computational difficulties. Even fewer attempts have been made to correlate experimental data with theoretical calculations. The experimental conditions are indeed stringent - not only is a knowledge of crystal perfection, morphology, and orientation necessary, but other factors such as specimen contamination are important and must be carefully controlled. The experimental method of fine-focus convergent-beam electron diffraction has been successfully applied by Goodman and Lehmpfuhl to single crystals of MgO containing light atoms and more recently by Lynch to single crystalline (111) gold films which contain heavy atoms. In both experiments intensity distributions were calculated using the multislice method of n-beam diffraction theory. In order to obtain reasonable accuracy Lynch found it necessary to include 139 beams in the calculations for gold with all but 43 corresponding to beams out of the [111] zone.


Author(s):  
John H. L. Watson ◽  
John L. Swedo ◽  
M. Vrandecic

The ambient temperature and the nature of the storage fluids may well have significant effects upon the post-implantation behavior of venus autografts. A first step in the investigation of such effects is reported here. Experimental conditions have been set which approximate actual operating room procedures. Saphenous veins from dogs have been used as models in the experiments. After removal from the dogs the veins were kept for two hours under four different experimental conditions, viz at either 4°C or 23°C in either physiological saline or whole canine arterial blood. At the end of the two hours they were prepared for light and electron microscopy. Since no obvious changes or damage could be seen in the veins by light microscopy, even with the advantage of tissue specific stains, it was essential that the control of parameters for successful grafts be set by electron microscopy.


Author(s):  
M. Iwatsuki ◽  
Y. Kokubo ◽  
Y. Harada

On accout of its high brightness, small optical source size, and minimal energy spread, the field emission gun (FEG) has the advantage that it provides the conventional transmission electron microscope (TEM) with a highly coherent illumination system and directly improves the resolving power and signal-to-noise ratio of the scanning electron microscope (SEM). The FEG is generally classified into two types; the cold field emission (C-FEG) and thermal field emission gun (T-FEG). The former, in which a field emitter is used at the room temperature, was successfully developed as an electron source for the SEM. The latter, in which the emitter is heated to the temperature range of 1000-1800°K, was also proved to be very suited as an electron source for the TEM, as well as for the SEM. Some characteristics of the two types of the FEG have been studied and reported by many authors. However, the results of the respective types have been obtained separately under different experimental conditions.


Sign in / Sign up

Export Citation Format

Share Document