scholarly journals Formulation and Evaluation of Sustained Release Matrix Tablets of Aceclofenac

2021 ◽  
Vol 4 (2) ◽  
pp. 99-109
Author(s):  
Priyanka Singh ◽  
Amit Kumar Shrivastava ◽  
Sachin Kumar ◽  
Manish Dhar Dwivedi

This study aimed to improve the dissolution rate of aceclofenac and release the drug in a controlled manner over a period of 24 hours. Matrix tablets were prepared by direct compression method, using hydrophilic polymers (HPMC/guar gum). Matrix tablets were prepared by wet granulation method using different hydrophilic polymers (HPMC/guar gum). Tablets were evaluated for in vitro drug release profile in phosphate buffer with pH 6.8 (without enzymes). The thickness and hardness of prepared tablets were 3.23 ± 0.035 to 3.28 ± 0.008 mm and 3.26 ± 0.115 to 3.60 ± 0.200 kg/cm2, respectively. The friability was within the acceptable limits of pharmacopoeial specifications (0.31 to 0.71%), which indicates the good mechanical strength of the tablets. Drug release was retarded with an increase in polymer concentration due to the gelling property of polymers. The in vitro drug release from the proposed system was best explained by Higuchi’s model, indicating that drug release from tablets displayed a diffusion-controlled mechanism. The results clearly indicate that guar gum could be a potential hydrophilic carrier in developing oral controlled drug delivery systems. Based on the study results, formulations F8 was selected as the best formulation.

2021 ◽  
Vol 11 (5-S) ◽  
pp. 100-107
Author(s):  
M. Pradeep Kumar ◽  
Goparaju Suryanarayana Murthy ◽  
Annamdasu Lakshmi Poojitha ◽  
P. Sindhuri ◽  
A Sreekanth ◽  
...  

The study on the effect of polymer concentration on in vitro drug release profile revealed that there is a change in vitro drug release parameters (t50, t80, and MDT) with a change in polymer concentration. Fraction of HPMC K4M, HPMC K 100 M, and Ethyl Cellulose were required to be 15, 10, and 7 mg respectively for designing optimized batch F7. The release rate of Colchicine decreased proportionally with an increase in the concentration of ethyl Cellulose and HPMC K100 M. Also the high amount of HPMC K4M leads to the less initial release and sustain effect. A theoretical drug release profile was generated using pharmacokinetic parameters of Colchicine. The value of t50 and t80 of theoretical drug release profile was found to be 242 min and 529 min respectively. The similarity factor f2 was applied between the in vitro drug release profile of optimizing batches and theoretical profile, which indicate a decent similarity between all in vitro drug release profiles (f2 = 68.28 for F7). All the batches except F1shows the value of f2 value within a range. Batch F7 showed the highest f2 (f2 = 68.28) among all the batches and this similarity was also reflected in t50 (≈ 256 min) and t80 (≈ 554 min) values. A 23 full factorial design was applied to systemically optimize in vitro drug release profile. The HPMC K4M (X1), Concentration of HPMC K100 M (X2), and concentration of EC (X3) were selected as independent variables. The time required for 50% drug released (t50), the time required for 80% drug release (t80), similarity factor f2, and mean dissolution time (MDT) were selected as dependent variables. The results of full factorial design indicate that the HPMC K4M (X1), Concentration of HPMC K100 M (X2), and concentration of EC (X3) have a significant effect on in vitro drug release profile. To find out the release mechanism the in vitro release data were fitted in the Korsmeyer-Peppas equation. All Batches except F1 and F3 show Anomalous diffusion-controlled release (combined mechanism of diffusion and case II transport).  


Author(s):  
ZEESHAN SHAIKH

Objective: Irbesartan is an antihypertensive with limited bioavailability. The objective of the study was to develop controlled release matrix tablets of irbisartan drug. Methods: Tablets were prepared by wet granulation process. Result: In vitro drug release study revealed that HPMC causes initial burst release of drug hence combining HPMC sustained the action for 8 h (95.92±0.57% release). Fitting the in vitro drug release data to Korsmeyer equation indicated that diffusion along with erosion could be the mechanism for drug release. Compared to conventional tablets, the release of model drug from these HPMC matrix tablets was prolonged, leading to achieve an effective therapy with a low dosage of the drug, to reduce the frequency of medication. The pharmacological and clinical properties of irbesartan, a noncompetitive angiotensin II receptor type 1 antagonist, successfully used for more than a decade in the treatment of essential hypertension. Results: Compatibility Studies In order to investigate the possible interactions between irbesartan and distinct polymers and/or diluents, FT-IR and DSC studies were carried out. FT-IR results proved that the drug was found to be compatible with excipients as wave numbers are almost similar for pure drug and also drug excipients mixture. In picture 1 and 2. DSC studies indicate that chosen excipients for the formulation were found to be compatible with the active ingredient as the melting endothermic peaks are in the range of 250-320 °C which is same as the melting point of irbisartan. Conclusion: Irbesartan exerts its antihypertensive effect through an inhibitory effect on the pressure response to angiotensin II. Irbesartan 150–300 mg once daily confers a lasting effect over 24 h, and its antihypertensive efficacy is further enhanced by the coadministration of hydrochlorothiazide.


Author(s):  
Vidya Viswanad ◽  
Shammika P ◽  
Aneesh Tp

ABSTRACTObjective: The current research deals with the formulation and evaluation of synthesized quinazolinone derivative for colon site specific delivery.Methods: The synthesized quinazolinone derivative was enteric coated 5% Eudragit L-100 with by wet granulation method using guar gum, pectin,and guar gum pectin combination as hydrophilic polymer. The prepared matrix tablet was characterized by differential scanning calorimetry andevaluated for different pre-compression and post-compression studies and drug release profiles.Results: All the matrix tablets were within the range of pharmacopeial limits with better flow properties. All the six formulations of matrix tablets haddisintegrated within 5-6 minutes. The optimized formulation selected was F6 formulation combination of guar gum and pectin with 95.79% of drugrelease than compared to the remaining formulation. The optimized matrix tablets followed zero order kinetics with Fickian diffusion.Conclusion: The results proposed that the combination of guar gum and pectin coated tablet with 5% Eudragit L-100 of synthesized quinazolinonederivative is a promising colon site specific delivery.Keywords: Quinazolinone derivative, In vitro drug release, Disintegration time, Guar gum, Pectin, 5% Eudragit L-100, Colon site-specific delivery, Wetgranulation, Compression.


2017 ◽  
Vol 9 (3) ◽  
pp. 31
Author(s):  
Hanan Jalal Kassab ◽  
Lena Murad Thomas ◽  
Saba Abdulhadi Jabir

Objective: The aim of this study was to develop a bioadhesive gel of gatifloxacin for the treatment of periodontal diseases.Methods: Periodontal gels of gatifloxacin were prepared using different hydrophilic polymers such as carbopol 940 (CP 940), carboxymethyl cellulose (CMC) and hydroxypropylmethyl cellulose (HPMC) in varied concentrations, either alone or as a combination. The prepared gels were evaluated for their physical appearance, pH, drug content, viscosity, bioadhesiveness and in vitro drug release profile. The influence of the type and the concentration of polymer on the drug release as well as on viscosity and mucoadhesiveness of prepared gels were investigated.Results: The prepared gels showed acceptable physical properties concerning color, homogeneity, consistency, spreadability, and pH value. Using different polymer types at different concentrations, as well as different polymer combinations, play a significant role in the variation of overall characteristics of formulations. Increasing the concentration of polymer increased the viscosity as well as mucoadhesion, and reduced drug release rate. Formulation F 11 (1 % CP 940 and 5 % CMC) was selected as the formula of choice based on the data of various evaluation parameters such as pH, drug content, viscosity, spreadability and bioadhesion as well as its ability to show a prolonged drug release pattern.Conclusion: The obtained results show that a bioadhesive periodontal gel of gatifloxacin can be prepared using hydrophilic polymers, and by using a combination of polymers the viscosity, mucoadhesiveness, spreadability and release behavior can be optimized.


2019 ◽  
Vol 9 (4-A) ◽  
pp. 38-47
Author(s):  
Revathi Sundaramoorthy ◽  
V Gopal ◽  
G Jeyabalan

The aim of the present work is to formulate, optimize and evaluate hydrodynamically balanced antidiabetic system incorporated with sitagliptin and phytochemical constituents of Triphala extract for the treatment of constipation associated with diabetes.  The Triphala churna of two different ratios, 1:1:1 (TC1) and 1:2:4 (TC2) were subjected to hot percolation using Soxhlet apparatus using methanol as solvent. The floating matrix tablets of Sitagliptin with methanolic Triphala extract was prepared by wet granulation technique using HPMC K4M as polymer, starch/honey as binder and sodium bicarbonate & citric acid as effervescent agents by 24 factorial design.  The compatibility studies showed that there is no chemical interaction between the drug, polymer and the excipients used in the tablets.  The independent variables are drug & Triphala extract ratio (X1), Triphala proportion (X2), binder used for granulation (X3), and amount of effervescent excipients used (X4).  The dependent variables are hardness (Y1), buoyancy lag time (Y2), total floating time (Y3), in-vitro drug release (Y4), and T50% (Y5).  The prepared floating tablets were subjected to all post compression parameters such as hardness, friability, swelling capacity, buoyancy, total floating time, drug content & in-vitro drug release and were found to be within normal limits.  Based on drug content, buoyancy lag time and in-vitro drug release the formulations F14 and F16 were selected for in-vivo study of the formulation.  Keywords:  Triphala, Sitagliptin, honey, floating tablet. 


2020 ◽  
Vol 11 (2) ◽  
pp. 1807-1813
Author(s):  
Naga Sujan M ◽  
Kunal K Mehta ◽  
Amit B Patil ◽  
Anusha Vajhala

The present study is aimed to formulate, characterization, and evaluate oral immediate-release tablets of Ethosuximide. It is employed as an anti-epileptic agent used in the treatment of epilepsy, in all the age groups who were≥ 1 year. The dosage form is formulated by directly compressing the blend and granulating the powder blend by wet granulation methods. The optimized formulation is achieved by the trial and error method by changing the concentration of lactose monohydrate and di-basic calcium phosphate dehydrate as diluents, sodium starch glycolate as Super-dis-integrant, rice Starch as an intra-granular binder, hydroxypropyl cellulose as binder talc as a lubricant. Evaluation parameters such as micrometric properties, disintegration time along with in-vitro drug release studies were performed for characterizing the dosage form. In-vitro drug release studies were carried out using 0.1 N HCl as dissolution media with 75 rpm and temperature of 370C ± 50C by employing USP apparatus II (Paddle type). Estimation of the % drug release of the tablet was carried out using the UV method. The prepared formulation and the marketed formulation were tested for the in-vitro drug release profile and the prepared formulation was compared with the marketed formulation. All the evaluated result was found to be within the specifications. Therefore, from the obtained evaluation results F6 trail was selected as the best formulation.


2020 ◽  
Vol 8 (02) ◽  
pp. 40-45
Author(s):  
Chhitij Thapa ◽  
Roma Chaudhary

INTRODUCTION Domperidone is a unique compound with gastro kinetic and antiemetic effects. It is used in the management of disorder by impaired motility like gastroesophageal reflux (in some instances), gastroparesis, dyspepsia, heartburn, epigastric pain, nausea, vomiting, and colonic inertia. The sustained release system is a widely accepted approach for slow drug release over an extended period to address the challenges of conventional oral delivery, including dosing frequency, drug safety, and efficacy. The study aims to formulate a domperidone sustained release tablet and compare the dissolution rate with the marketed formulations. MATERIAL AND METHODS Sustained release matrix tablets of domperidone were prepared by wet granulation method using different polymers such as HPMC K4M, ethyl cellulose, Gum acacia. Pre-compression studies like angle of repose, bulk density, tapped density, Carr's index, and Hausner’s ratio, and post-compression studies like weight variation, thickness, hardness, friability, drug content, and in-vitro drug release were evaluated.   RESULTS The release profile of domperidone sustained-release tablets was studied spectrophotometrically. The in-vitro dissolution study suggests the minimum %-cumulative drug release with 98.33% in F5. The %-cumulative drug release was maximum in F3 with 99.69%. The in-vitro drug release of all the formulations was non-significant compared to the marketed formulation (p<0.05), exhibiting the sustained-release property by all the formulations. CONCLUSION The pre-compression study concludes the better flow property of the granules of different formulations. The sustained release domperidone tablets were prepared successfully by the wet granulation method. The post-compression parameters of different formulations were within the acceptable range.


Author(s):  
Mahendar Rupavath ◽  
Kranthi G. ◽  
Chinna Palem ◽  
K. S. K. Patnaik

The aim of the present investigation was to develop floating matrix tablets of stavudine to achieve prolong gastric residence time, leading to an increase in drug bioavailability and patient compliance. Floating tablets were prepared by wet granulation technique, using hydroxypropyl methylcellulose (HPMC K15M) as synthetic, pullulan gum as natural rate controlling polymers and optimum amounts of sodium-bicarbonate and citric acid as gas generating agents in suitable ratios to generate optimum buoyancy. Developed formulations were evaluated for weight variation, thickness, hardness, friability, drug content, in vitro drug release, floating lag time and floating buoyancy. All the formulations exhibited acceptable physical properties and the best formulation (F3) was selected based on in vitro characteristics. Further, the optimized formulation was evaluated for in vivo radiographic studies by incorporating BaSO4 as radio opaque substance. All the formulations were studied for in vitro drug release characteristics for 16 h. Optimized formulation showed controlled and prolonged drug release profiles while floating over the dissolution medium. Diffusion followed by erosion drug release mechanism was observed for the formulation, indicating that water diffusion and polymer erosion played an essential role in drug release. In vivo radiographic studies revealed that the tablets remained in the stomach for 8 ± 0.5 h in fasting human volunteers and indicated that gastric retention time was increased by the floating principle, which was considered and desirable for absorption window drugs.


Author(s):  
Sanjesh Rathi ◽  
Sohansinh Vaghela ◽  
Raj Shah ◽  
Shrenik Shah

The present research work done with an objective of preparation and evaluation of floating tablets of Febuxostat drug with Hydroxypropylenemethyl cellulose (HPMC), Polyox N-60K, Carbopol 934 P and Guar gum polymers. Floating tablets were based on effervescent approach using sodium bicarbonate a gas releasing agent. Direct compression method was used in present study for preparation of tablets. Effect of polymers was evaluated by studying drug release and floating time. In-vitro drug release profile indicates that sustained nature increased by increasing the concentration of polymer. The formulation containing Polyox N-60K and Carbopol 934 P in combination was optimized as it showed drug release up to 12hrs. Optimized formulation F18 was found stable during stability condition up to 1 month.


Sign in / Sign up

Export Citation Format

Share Document