scholarly journals Dual- Band Antenna for Wi-Fi and 5G Applications

In this communication, a circular patch antenna is reported for dual- band operation based on VIAs. Initially the patch is resonating at single band with Linear Polarization (LP), and the Circular Polarization (CP) is obtained by inserting semi circular cuts at the edges of circular patch. The second band is achieved by loading the vertical metallic VIAs along the circumference of the patch antenna. The reported antenna is working at 2.4 GHz (Wi-Fi) and 3.5 GHz (5G) bands with Return Loss Band Width (RLBW) of 4.83% and 10.37% respectively. The Axial Ratio (AR) bandwidth at 5G band is 2.38% (3.31- 3.39 GHz)

Author(s):  
Nurhayati Nurhayati ◽  
Paulen Aulia Lutfia ◽  
Raimundo Eider Figueredo Sobrinho ◽  
Alexandre Manicoba De Oliveira ◽  
João Francisco Justo Filho ◽  
...  

Microstrip antenna with circular polarization can be applied for many applications. Some microstrip antenna with square, circular, triangular, and hexagonal shape has been designed to get return loss, axial ratio, and radiation performance. We compare twelve microstrip antenna by maintaining its substrate dimension, feeding shape, and outer patch dimension. Even though antenna has a circular patch, it doesn’t always produce circular polarization. From the simulation, we found that with add some structure, the antenna can reach multiband resonance from 1 to 6 GHz. The Circular patch antenna reached seven numbers of the multiband resonance frequency. The hexagonal patch antenna reaches the highest directivity as 9.53 dBi. The circular polarization is achieved for a square and Hexagonal patch shape with axial ratio value is 1.96 dB at 4 GHz and  1.26 dB at 4.1 GHz sequentially at phi 900 and theta 900. 


Author(s):  
A. H. Majeed ◽  
K. H. Sayidmarie

<p>This paper presents a new wideband microstrip circular patch antenna (MCPA) fed by proximity-coupled line with double-stub matching to achieve dual-band operation. Bandwidth extension is achieved by exciting higher-order modes in the circular radiating patch, and using two stubs to achieve adequate matching across the obtained two bands. The characteristics of the antenna such as reflection coefficient, impedance bandwidth, gain and radiation pattern are investigated and optimized through parametric studies using the CST Microwave Studio Suite. The antenna achieved a large relative bandwidth of 45.16% at the upper band, while the lower one has 10.3% relative bandwidth. The maximum achieved gain of the dual-band antenna in the 5.8GHz band is 4.62dBi while it is 4.85dBi in the upper band. The antenna has an overall size of 30×30×3.2mm3 corresponding to 0.58λ × 0.58 λ × 0.062 λ at the lower band of 5.8 GHz. The proposed antenna should be useful for WLAN and X-band communication systems.</p>


Author(s):  
Pendli Pradeep ◽  
S. K. Satyanarayana

An antenna is a crucial component in the wireless communication system which converts electrical waves to EM waves and vice-versa which leads to revaluation in wireless communication technology. Due to this reason the experiment was performed on a simple circular patch antenna for better radiation along with wide transmission bandwidth. In this paper, a simple circular microstrip antenna structure is designed to operate at dual bands. The proposed antenna consists of a circular radiating patch, a 50-ohm feedline line, a quarter-wave impedance matching transmission line, and a ground plane. It meets significant requirements for large bandwidth, optimized gain, minimum reflections, and small size with high directivity and efficiency. This antenna contains FR4 Epoxy substrate material with permittivity 4.4 and size 36mm x 36mm x 1.67mm. ANSOFT HFSS simulator is used to analyze various parameters like return loss, VSWR, Impedance, and gain. The Resonant Frequency of the designed antenna is 8.77 GHz and 10.6 GHz. with minimum Return Loss of -52 dB and -21.66 dB respectively. It was also observed that 1.005 and 1.2 VSWR at 8.77 GHz and 10.6 GHz respectively.


Author(s):  
Rakesh N

Abstract: The evolution of wireless communication system has led path for innovative antenna design specifically in wideband antenna for WiMax application. In this paper design and simulation of microstrip wideband circular patch antenna array operating between 2GHz to 4Ghz is presented. The circular patch antenna is designed to operate at 3GHz line feed and the ground is itched to achieve required wideband characteristics. The simulation is carried out in EM Flow solver, High Frequency Structure Simulator software. For a single patch antenna, the return loss, lesser than -10dB throughout the bandwidth. Later an antenna array is operating between 2GHz to 4GHz frequency is designed and simulated. The return loss is lesser than -12dBi throughout the band and a peak gain is 14.7dBi. Keywords: Microstrip Patch Antenna (MPA), High Frequency Structure Simulator (HFSS).


This proposes a new diminutive octa polarization reconfigurable circular patch antenna design. This new antenna can operate in eight different polarizing states (6 different angles of linear polarization and 2 circular polarization states) with the help of a reconfigurable probe feed network. The antenna comprises of a circular layer of radiation with four equally spaced slits at the boundary of the circular patch to obtain size reduction. The bias voltages of six pairs of PIN diodes are interval between each state. A 3 dB hybrid coupler and a RF switch are used to produce reconfiguration between circular polarization states of the right and left hand. The proposed antenna was designed using CST microwave studio, fabricated as a prototype model and tested which produces desired values for various parameters of antenna including compact size. The designed antenna operates within 2.4-2.5 GHz frequencies suitable for wireless applications


Author(s):  
Syed Muhammad Ali

Design of antennas for the latest upcoming standards of WLANs is considered as a key challenge in the science of Mobile Communication Engineering. Micro strip antennas are supposed to have some quality features in mobile and wireless network systems. Their weight and size are reduced and they are capable of having low power capacity. All these interesting features enabled these type of antennas suitable for the communication of IEEE 802.11ax-2019 high speed WLANs. Shape of these antennas can be designed in an efficient manner to achieve required gain and bandwidth. In this paper the concept of circular polarization has been introduced along with compact design of antennas in order to achieve return loss and axial ratio of less than -10 dB and 3dB respectively. Antenna has been designed and simulated on CST MW studio software and usage of dual bands 2.4 and 5.2GHz having circular polarization is properly elucidated for 802.11ax-2019.


Sign in / Sign up

Export Citation Format

Share Document