scholarly journals Optimal Techno-economic Sequence-based Set of Diagnostic Tests for Distribution Transformers Using Genetic Algorithm

2020 ◽  
Vol 64 (4) ◽  
pp. 406-411
Author(s):  
Hamed Hashemi-Dezaki ◽  
Oleksandr Rubanenko ◽  
Maksym Hryshchuk ◽  
Olena Rubanenko

The diagnostic measurement and tests of transformers are essential. Also, the costs of diagnostic tests are considerable. Hence, proposing a method to determine an economic-technical sequence-bases set of diagnostic tests for transformers is useful and interesting. In this paper, a new method is proposed to determine the optimal sequence-based set of diagnostic tests for distribution transformers. A new objective function based on the branch and bound concept is developed in this paper. The proposed optimization problem is solved by using the Genetic Algorithm (GA). The statistical data regarding the experimental diagnostic tests for more than 20 distribution transformers of South-West Power System Company (Pivdenno-Zakhidna Power System) located in Ukraine have been used. The usage of the actual statistical data of distribution transformers is one of the most important contributions of this paper. The comparison of the obtained optimum test results and those of a typical conventional non-optimum sequence of diagnostic tests illustrate the advantages of the proposed method. By applying the proposed method, it is achievable to perform the comprehensive diagnostic tests with the minimum required costs.

2012 ◽  
Vol 614-615 ◽  
pp. 1361-1366
Author(s):  
Ai Ning Su ◽  
Hui Qiong Deng ◽  
Tian Wei Xing

Reactive power optimization is an effective method for improving the electricity quality and reducing the power loss in power system, and it is a mixed nonlinear optimization problem, so the optimization process becomes very complicated. Genetic algorithm is a kind of adaptive global optimization search algorithm based on simulating biological genetic in the natural environment and evolutionary processes, can be used to solve complex optimization problems such as reactive power optimization. Genetic algorithm is used to solve reactive power optimization problem in this study, improved the basic genetic algorithm, included the select, crossover and mutation strategy, and proposed a individual fitness function with penalty factor. The proposed algorithm is applied to the IEEE9-bus system to calculate reactive power. The results show the superiority of the proposed model and algorithm.


2020 ◽  
Vol 184 ◽  
pp. 01069
Author(s):  
Ch. Leela Kumari ◽  
Vikram Kumar Kamboj

This paper proposes the Improved Chimp Algorithm (ICHIMP) to solve single area dynamic economic load dispatch (ELD) problem of electric power system. Chimp is a biologically-stimulated heuristic optimization technique, which is embedded on impersonating the technique chimps hunt for food and remain existent by escaping from their adversary. The particularity of ICHIMP is that the chimps move in group for hunting but each chimp searches the prey independently. The single area dynamic dispatch problem is described as non-linear, complex and forced optimization problem with objective function to curtail the total generation price, whereas fulfilling the correspondence and dissimilarity constraints of the system. This proposed algorithm has been tested on five different test systems consisting of 3, 6, 13, 20 and 40- generating units.. The test results of ICHIMP determine its superiority over other existing algorithms addressed in literature and show that it outperforms for Single area dynamic dispatch problem of electric power system.


1999 ◽  
Vol 38 (01) ◽  
pp. 50-55 ◽  
Author(s):  
P. F. de Vries Robbé ◽  
A. L. M. Verbeek ◽  
J. L. Severens

Abstract:The problem of deciding the optimal sequence of diagnostic tests can be structured in decision trees, but unmanageable bushy decision trees result when the sequence of two or more tests is investigated. Most modelling techniques include tests on the basis of gain in certainty. The aim of this study was to explore a model for optimizing the sequence of diagnostic tests based on efficiency criteria. The probability modifying plot shows, when in a specific test sequence further testing is redundant and which costs are involved. In this way different sequences can be compared. The model is illustrated with data on urinary tract infection. The sequence of diagnostic tests was optimized on the basis of efficiency, which was either defined as the test sequence with the least number of tests or the least total cost for testing. Further research on the model is needed to handle current limitations.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1648
Author(s):  
Marinko Barukčić ◽  
Toni Varga ◽  
Vedrana Jerković Jerković Štil ◽  
Tin Benšić

The paper researches the impact of the input data resolution on the solution of optimal allocation and power management of controllable and non-controllable renewable energy sources distributed generation in the distribution power system. Computational intelligence techniques and co-simulation approach are used, aiming at more realistic system modeling and solving the complex optimization problem. The optimization problem considers the optimal allocation of all distributed generations and the optimal power control of controllable distributed generations. The co-simulation setup employs a tool for power system analysis and a metaheuristic optimizer to solve the optimization problem. Three different resolutions of input data (generation and load profiles) are used: hourly, daily, and monthly averages over one year. An artificial neural network is used to estimate the optimal output of controllable distributed generations and thus significantly decrease the dimensionality of the optimization problem. The proposed procedure is applied on a 13 node test feeder proposed by the Institute of Electrical and Electronics Engineers. The obtained results show a huge impact of the input data resolution on the optimal allocation of distributed generations. Applying the proposed approach, the energy losses are decreased by over 50–70% by the optimal allocation and control of distributed generations depending on the tested network.


2020 ◽  
Vol 12 (23) ◽  
pp. 9818
Author(s):  
Gabriel Fedorko ◽  
Vieroslav Molnár ◽  
Nikoleta Mikušová

This paper examines the use of computer simulation methods to streamline the process of picking materials within warehouse logistics. The article describes the use of a genetic algorithm to optimize the storage of materials in shelving positions, in accordance with the method of High-Runner Strategy. The goal is to minimize the time needed for picking. The presented procedure enables the creation of a software tool in the form of an optimization model that can be used for the needs of the optimization of warehouse logistics processes within various types of production processes. There is a defined optimization problem in the form of a resistance function, which is of general validity. The optimization is represented using the example of 400 types of material items in 34 categories, stored in six rack rows. Using a simulation model, a comparison of a normal and an optimized state is realized, while a time saving of 48 min 36 s is achieved. The mentioned saving was achieved within one working day. However, the application of an approach based on the use of optimization using a genetic algorithm is not limited by the number of material items or the number of categories and shelves. The acquired knowledge demonstrates the application possibilities of the genetic algorithm method, even for the lowest levels of enterprise logistics, where the application of this approach is not yet a matter of course but, rather, a rarity.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Jing Xiao ◽  
Jing-Jing Li ◽  
Xi-Xi Hong ◽  
Min-Mei Huang ◽  
Xiao-Min Hu ◽  
...  

As it is becoming extremely competitive in software industry, large software companies have to select their project portfolio to gain maximum return with limited resources under many constraints. Project portfolio optimization using multiobjective evolutionary algorithms is promising because they can provide solutions on the Pareto-optimal front that are difficult to be obtained by manual approaches. In this paper, we propose an improved MOEA/D (multiobjective evolutionary algorithm based on decomposition) based on reference distance (MOEA/D_RD) to solve the software project portfolio optimization problems with optimizing 2, 3, and 4 objectives. MOEA/D_RD replaces solutions based on reference distance during evolution process. Experimental comparison and analysis are performed among MOEA/D_RD and several state-of-the-art multiobjective evolutionary algorithms, that is, MOEA/D, nondominated sorting genetic algorithm II (NSGA2), and nondominated sorting genetic algorithm III (NSGA3). The results show that MOEA/D_RD and NSGA2 can solve the software project portfolio optimization problem more effectively. For 4-objective optimization problem, MOEA/D_RD is the most efficient algorithm compared with MOEA/D, NSGA2, and NSGA3 in terms of coverage, distribution, and stability of solutions.


2009 ◽  
Vol 26 (04) ◽  
pp. 479-502 ◽  
Author(s):  
BIN LIU ◽  
TEQI DUAN ◽  
YONGMING LI

In this paper, a novel genetic algorithm — dynamic ring-like agent genetic algorithm (RAGA) is proposed for solving global numerical optimization problem. The RAGA combines the ring-like agent structure and dynamic neighboring genetic operators together to get better optimization capability. An agent in ring-like agent structure represents a candidate solution to the optimization problem. Any agent interacts with neighboring agents to evolve. With dynamic neighboring genetic operators, they compete and cooperate with their neighbors, and they can also use knowledge to increase energies. Global numerical optimization problems are the most important ones to verify the performance of evolutionary algorithm, especially of genetic algorithm and are mostly of interest to the corresponding researchers. In the corresponding experiments, several complex benchmark functions were used for optimization, several popular GAs were used for comparison. In order to better compare two agents GAs (MAGA: multi-agent genetic algorithm and RAGA), the several dimensional experiments (from low dimension to high dimension) were done. These experimental results show that RAGA not only is suitable for optimization problems, but also has more precise and more stable optimization results.


Sign in / Sign up

Export Citation Format

Share Document