scholarly journals Effects of Injection Molding Screw Tips on Polymer Mixing

2018 ◽  
Vol 62 (3) ◽  
pp. 241-246 ◽  
Author(s):  
Dániel Török ◽  
József Gábor Kovács

In all fields of industry it is important to produce parts with good quality. Injection molded parts usually have to meet strict requirements technically and aesthetically. The aim of the measurements presented in our paper is to investigate the aesthetic appearance, such as surface color homogeneity, of injection molded parts. It depends on several factors, the raw material, the colorants, the injection molding machine and the processing parameters. In this project we investigated the effects of the injection molding machine on surface color homogeneity. We focused on injection molding screw tips and investigated five screw tips with different geometries. We produced flat specimens colored with a masterbatch and investigated color homogeneity. To evaluate the color homogeneity of the specimens, we used digital image analysis software developed by us. After that we measured the plastication rate and the melt temperature of the polymer melt because mixing depends on these factors. Our results showed that the screw tips (dynamic mixers) can improve surface color homogeneity but they cause an increase in melt temperature and a decrease in the plastication rate.

2016 ◽  
Vol 36 (8) ◽  
pp. 861-866 ◽  
Author(s):  
Quan Wang ◽  
Zhenghuan Wu

Abstract This paper presents a study of the characteristics of axial vibration of a screw in the filling process for a novel dynamic injection molding machine. By simplifying a generalized model of the injection screw, physical and mathematic models are established to describe the dynamic response of the axial vibration of a screw using the method of lumped-mass. The damping coefficient of the screw is calculated in the dynamic filling process. The amplitude-frequency characteristics are analyzed by the simulation and experimental test of polypropylene. The results show that the amplitude of a dynamic injection molding machine is not only is related to structure parameters of the screw and performance of the material, such as non-Newtonian index, but also depends on the processing parameters, such as vibration intensity and injection speed.


2018 ◽  
Vol 62 (4) ◽  
pp. 284-291 ◽  
Author(s):  
László Zsíros ◽  
József Gábor Kovács

In this paper we are presenting a novel method for color inhomogeneity evaluation. We proved that this method has a higher than 95 % linear correlation coefficient if results are correlated with human visual evaluations.We applied this evaluation method to analyze the homogenization in the injection molding process, therefore we measured the homogenization properties of various solid phase masterbatches on injection molded parts. We tested the effects of the processing parameters of injection molding and analyzed various dynamic and static mixers as well. We have also measured the influence of the mold surface texture on the sensation of inhomogeneities on the part surface.We have carried out our tests on an injection grade ABS material using various masterbatches. The method was based on the digitization of the molded flat specimens. The images of these specimens were evaluated with an own developed formula using the CIELAB color space resulting high correlation with human visual inspections.


2014 ◽  
Vol 3 (2) ◽  
pp. 82
Author(s):  
Kanaga Lakshmi ◽  
D. Manamalli ◽  
M. Mohamed Rafiq

Good control of plastic melt temperature for injection molding is very important in reducing operator setup time, ensuring product quality, and preventing thermal degradation of the melt. The controllability and set points of barrel temperature also depend on the precise monitoring and control of plastic melt temperature. Motivated by the practical temperature control of injection molding, this paper proposes MPC and IMC based control scheme. A robust system identification and control methodology is developed which uses canonical varieties analysis for identification and model predictive control for regulation. The injection molding process consists of three zones and the mathematical model for each of the zone is different. The control output for each zone controller is assigned a weight based on the computed probability of each model and the resulting action is the weighted average of the control moves of the individual zone controllers. Keywords: Injection-Molding Machine (IMM), IMC Control, Temperature Control.


The efficiency of the ‘Injection molding Machine’ lies in the proper designing of screw feeder mechanism. The screw feeding mechanism needs to be setup differently for different materials, molds etc. The proper design includes the work from selecting the appropriate materials, designing for the optimum design, analysis of the designed parts at different flow rates, speed and temperatures. There are various parameters that govern the efficiency of the ’Injection molding Machine’. These parameters include ‘Filling Pressure’, ‘Mold Surface Temperature’, ‘Raw Material Melting Temperature’, ‘Filling Time’ etc.


Author(s):  
Alan M. Tom ◽  
Aleksandar K. Angelov ◽  
John P. Coulter

The primary objective of this study, through a scientific experimental investigation, was to determine optimum injection molding processing parameters on semi-crystalline materials HDPE and POM focusing on mechanical properties, obtained thru the use of a nano-indenter, of micro gears being manufactured on non-heated and heated mold bases. A secondary objective was to initiate a similar experimental study using amorphous COC material. Taguchi’s method utilizing an L-9 orthogonal array was used to determine the effects of Tnoz, Tmold, Pinj, Vinj, Ppack, and tpack injection molding processing parameters. A nano-indenter was used to determine investigated mechanical properties on final injection molded parts that included stiffness (S), reduced modulus (Er), and hardness (H). Results showed HDPE, POM and COC, heated mold experiments exhibiting increases in mechanical properties S, Er, and H, on the order of 1.2–4.0 times those of non-heated molding trials. Decreases in optimum molding conditions for Tnoz, Pinj, and Ppack was also observed for heated molding trials. The highest mold temperatures and injection pressures tested did not produce greatest optimum molding conditions. However, largest packing times tested produced optimum molding conditions.


2013 ◽  
Author(s):  
Laurentiu I. Sandu ◽  
Felicia Stan ◽  
Catalin Fetecau

In this paper, we investigated the effect of injection molding parameters on the mechanical properties of thin-wall injection molded parts. A four-factor (melt temperature, mold temperature, injection speed and packing pressure) and three-level fractional experimental design was performed to investigate the influence of each factor on the mechanical properties and determine the optimal process conditions that maximize the mechanical properties of the part using the signal-to-noise (S/N) ratio response. The mechanical properties (e.g., elastic modulus, yield strength and strain at break) were measured by tensile tests at room temperature, at a crosshead speed of 5 mm/min, and compared with those of the injection-molded specimens. The experimental results showed that the tensile properties were highly dependent on the injection molding parameters, regardless of the type of the specimens. The values of Young modulus and yield strength of the injection-molded specimens were lower than those of the injection-molded parts, while the elongation at break was considerably lower for the injection-molded parts. The optimal process conditions were strongly dependent on the measured performance quantities (elastic modulus, yield strength and strain at break).


Sign in / Sign up

Export Citation Format

Share Document