scholarly journals Erosion and sedimentation in Surtsey island quantified from new DEMs

2020 ◽  
Vol 14 ◽  
pp. 63-77
Author(s):  
Birgir Vilhelm Óskarsson ◽  
Kristján Jónasson ◽  
Guðmundur Valsson ◽  
Joaquín M.C. Belart

We present data from a photogrammetric study on Surtsey island that generated three new DEMs and orthoimages, two from scanned aerial images from 1967 and 1974 and one from high-resolution closerange images from a survey in 2019. DEM differencing allowed for quantification of the erosion and the sedimentation in the island since 1967. Of the subaerial volcanics, about 45% of the lava fields have eroded away but only about 16% of the tuff cones. The prevailing SW coastal wave erosion is evident from the erosive pattern in Surtsey, and the cumulative loss of the coastal margins amounts to 28±0.9x106 m3 since 1967, with the current average erosion rate of 0.4±0.02x106 m3 /yr. Wind deflation and runoff erode the tuff cones and the sediments at the flanks of the cones, with the total volume loss amounting to 1.6±0.2x106 m3 and the current erosion rate of 0.03±0.004x106 m3 /yr. A rapid decline in erosion rates characterized the first years post-eruption, and the coastal erosion rate during the winter of 1967–68 was about 5–6 times higher than the current erosion rate due to the thinner and less cohesive nature of the lava apron at the edge of the shelf. The cones eroded at a rate about 2–3 times higher during the first years due to the uncompacted and unconsolidated nature of the cones at that time. The 2019 area of 1.2 km2 and an extrapolation of the current erosion rate fits well with the projected erosion curve of Jakobsson et al. (2000) with the island becoming a tuff crag after approximately 100 years.

2021 ◽  
Vol 9 ◽  
Author(s):  
Thomas M. Ravens ◽  
Sasha Peterson

Two prominent arctic coastal erosion mechanisms affect the coastal bluffs along the North Slope of Alaska. These include the niche erosion/block collapse mechanism and the bluff face thaw/slump mechanism. The niche erosion/block collapse erosion mechanism is dominant where there are few coarse sediments in the coastal bluffs, the elevation of the beach below the bluff is low, and there is frequent contact between the sea and the base of the bluff. In contrast, the bluff face thaw/slump mechanism is dominant where significant amounts of coarse sediment are present, the elevation of the beach is high, and contact between the sea and the bluff is infrequent. We show that a single geologic parameter, coarse sediment areal density, is predictive of the dominant erosion mechanism and is somewhat predictive of coastal erosion rates. The coarse sediment areal density is the dry mass (g) of coarse sediment (sand and gravel) per horizontal area (cm2) in the coastal bluff. It accounts for bluff height and the density of coarse material in the bluff. When the areal density exceeds 120 g cm−2, the bluff face thaw/slump mechanism is dominant. When the areal density is below 80 g cm−2, niche erosion/block collapse is dominant. Coarse sediment areal density also controls the coastal erosion rate to some extent. For the sites studied and using erosion rates for the 1980–2000 period, when the sediment areal density exceeds 120 g cm−2, the average erosion rate is low or 0.34 ± 0.92 m/yr. For sediment areal density values less than 80 g cm−2, the average erosion rate is higher or 2.1 ± 1.5 m/yr.


2017 ◽  
Vol 927 (9) ◽  
pp. 22-29
Author(s):  
V.I. Kravtsovа ◽  
E.R. Chalova

Anapa bay bar is a valuable recreational-medical resource. Digital landscape-morphological mapping of its the Northern-Western part was created by digital aero survey materials for monitoring of its statement. Compiled maps show that in the Western part of region dune belt is degradated, front dune hills destroyed due to spreading of settlement Veselovka buildings to beach, and due to mass enactments carrying out at bay bar of lake Solenoe. Here it is necessary to decide the problem of defense from waves flooding by construction of artificial hills. The middle part of region, around Bugaz lagoon, is using for unregulated recreation of extreme sportsmen – windsurfing and kiting – with seasonal recreation in camping from tent-city and campers. Many short roads to sea beach, orthogonal to coast line, have been transformed to corridors of blowing and sea waves interaction to lagoon lowland with dune belt destroying. In the Eastern part of region, at Bugaz bay bar, dune belt is conserve, it changes under natural sea and wind processes action. At some places sea waves are erode windward front dune slope. Just everywhere sand accumulative trains are forming at leeward slope of front dune. Showed peculiarities of landscape morphological structure mast be taken in account due treatment of measures for bay bar defense and keeping.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shamsollah Ayoubi ◽  
Nafiseh Sadeghi ◽  
Farideh Abbaszadeh Afshar ◽  
Mohammad Reza Abdi ◽  
Mojtaba Zeraatpisheh ◽  
...  

Abstract Background As one of the main components of land-use change, deforestation is considered the greatest threat to global environmental diversity with possible irreversible environmental consequences. Specifically, one example could be the impacts of land-use changes from oak forests into agricultural ecosystems, which may have detrimental impacts on soil mobilization across hillslopes. However, to date, scarce studies are assessing these impacts at different slope positions and soil depths, shedding light on key geomorphological processes. Methods In this research, the Caesium-137 (137Cs) technique was applied to evaluate soil redistribution and soil erosion rates due to the effects of these above-mentioned land-use changes. To achieve this goal, we select a representative area in the Lordegan district, central Iran. 137Cs depth distribution profiles were established in four different hillslope positions after converting natural oak forests to rainfed farming. In each hillslope, soil samples from three depths (0–10, 10–20, and 20–50 cm) and in four different slope positions (summit, shoulder, backslope, and footslope) were taken in three transects of about 20 m away from each other. The activity of 137Cs was determined in all the soil samples (72 soil samples) by a gamma spectrometer. In addition, some physicochemical properties and the magnetic susceptibility (MS) of soil samples were measured. Results Erosion rates reached 51.1 t·ha− 1·yr− 1 in rainfed farming, whereas in the natural forest, the erosion rate was 9.3 t·ha− 1·yr− 1. Magnetic susceptibility was considerably lower in the cultivated land (χhf = 43.5 × 10− 8 m3·kg− 1) than in the natural forest (χhf = 55.1 × 10− 8 m3·kg− 1). The lower soil erosion rate in the natural forest land indicated significantly higher MS in all landform positions except at the summit one, compared to that in the rainfed farming land. The shoulder and summit positions were the most erodible hillslope positions in the natural forest and rainfed farming, respectively. Conclusions We concluded that land-use change and hillslope positions played a key role in eroding the surface soils in this area. Moreover, land management can influence soil erosion intensity and may both mitigate and amplify soil loss.


2019 ◽  
Vol 11 (24) ◽  
pp. 2893 ◽  
Author(s):  
Yi-Chun Lin ◽  
Yi-Ting Cheng ◽  
Tian Zhou ◽  
Radhika Ravi ◽  
Seyyed Hasheminasab ◽  
...  

Unmanned Aerial Vehicle (UAV)-based remote sensing techniques have demonstrated great potential for monitoring rapid shoreline changes. With image-based approaches utilizing Structure from Motion (SfM), high-resolution Digital Surface Models (DSM), and orthophotos can be generated efficiently using UAV imagery. However, image-based mapping yields relatively poor results in low textured areas as compared to those from LiDAR. This study demonstrates the applicability of UAV LiDAR for mapping coastal environments. A custom-built UAV-based mobile mapping system is used to simultaneously collect LiDAR and imagery data. The quality of LiDAR, as well as image-based point clouds, are investigated and compared over different geomorphic environments in terms of their point density, relative and absolute accuracy, and area coverage. The results suggest that both UAV LiDAR and image-based techniques provide high-resolution and high-quality topographic data, and the point clouds generated by both techniques are compatible within a 5 to 10 cm range. UAV LiDAR has a clear advantage in terms of large and uniform ground coverage over different geomorphic environments, higher point density, and ability to penetrate through vegetation to capture points below the canopy. Furthermore, UAV LiDAR-based data acquisitions are assessed for their applicability in monitoring shoreline changes over two actively eroding sandy beaches along southern Lake Michigan, Dune Acres, and Beverly Shores, through repeated field surveys. The results indicate a considerable volume loss and ridge point retreat over an extended period of one year (May 2018 to May 2019) as well as a short storm-induced period of one month (November 2018 to December 2018). The foredune ridge recession ranges from 0 m to 9 m. The average volume loss at Dune Acres is 18.2 cubic meters per meter and 12.2 cubic meters per meter within the one-year period and storm-induced period, respectively, highlighting the importance of episodic events in coastline changes. The average volume loss at Beverly Shores is 2.8 cubic meters per meter and 2.6 cubic meters per meter within the survey period and storm-induced period, respectively.


Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 62
Author(s):  
Alberto Alfonso-Torreño ◽  
Álvaro Gómez-Gutiérrez ◽  
Susanne Schnabel

Gullies are sources and reservoirs of sediments and perform as efficient transfers of runoff and sediments. In recent years, several techniques and technologies emerged to facilitate monitoring of gully dynamics at unprecedented spatial and temporal resolutions. Here we present a detailed study of a valley-bottom gully in a Mediterranean rangeland with a savannah-like vegetation cover that was partially restored in 2017. Restoration activities included check dams (gabion weirs and fascines) and livestock exclosure by fencing. The specific objectives of this work were: (1) to analyze the effectiveness of the restoration activities, (2) to study erosion and deposition dynamics before and after the restoration activities using high-resolution digital elevation models (DEMs), (3) to examine the role of micro-morphology on the observed topographic changes, and (4) to compare the current and recent channel dynamics with previous studies conducted in the same study area through different methods and spatio-temporal scales, quantifying medium-term changes. Topographic changes were estimated using multi-temporal, high-resolution DEMs produced using structure-from-motion (SfM) photogrammetry and aerial images acquired by a fixed-wing unmanned aerial vehicle (UAV). The performance of the restoration activities was satisfactory to control gully erosion. Check dams were effective favoring sediment deposition and reducing lateral bank erosion. Livestock exclosure promoted the stabilization of bank headcuts. The implemented restoration measures increased notably sediment deposition.


2021 ◽  
Vol 13 (13) ◽  
pp. 2473
Author(s):  
Qinglie Yuan ◽  
Helmi Zulhaidi Mohd Shafri ◽  
Aidi Hizami Alias ◽  
Shaiful Jahari Hashim

Automatic building extraction has been applied in many domains. It is also a challenging problem because of the complex scenes and multiscale. Deep learning algorithms, especially fully convolutional neural networks (FCNs), have shown robust feature extraction ability than traditional remote sensing data processing methods. However, hierarchical features from encoders with a fixed receptive field perform weak ability to obtain global semantic information. Local features in multiscale subregions cannot construct contextual interdependence and correlation, especially for large-scale building areas, which probably causes fragmentary extraction results due to intra-class feature variability. In addition, low-level features have accurate and fine-grained spatial information for tiny building structures but lack refinement and selection, and the semantic gap of across-level features is not conducive to feature fusion. To address the above problems, this paper proposes an FCN framework based on the residual network and provides the training pattern for multi-modal data combining the advantage of high-resolution aerial images and LiDAR data for building extraction. Two novel modules have been proposed for the optimization and integration of multiscale and across-level features. In particular, a multiscale context optimization module is designed to adaptively generate the feature representations for different subregions and effectively aggregate global context. A semantic guided spatial attention mechanism is introduced to refine shallow features and alleviate the semantic gap. Finally, hierarchical features are fused via the feature pyramid network. Compared with other state-of-the-art methods, experimental results demonstrate superior performance with 93.19 IoU, 97.56 OA on WHU datasets and 94.72 IoU, 97.84 OA on the Boston dataset, which shows that the proposed network can improve accuracy and achieve better performance for building extraction.


2021 ◽  
Author(s):  
Rémi Bossis ◽  
Vincent Regard ◽  
Sébastien Carretier

<p>The global solid flux from continent to ocean is usually reduced to the input of sediments from rivers, and is estimated at approximately 20 Gt/year. Another input of sediments to ocean is coastal erosion, but this flux is difficult to estimate on a global scale and it is often neglected, perhaps wrongly according to regional studies [1,2]. Most studies attempting to quantify coastal erosion have focused on the coasts of developed countries and are limited to the timescale of decades or less [3]. The difficulty in quantifying long-term coastal erosion is that there are still many uncertainties about the factors controlling coastal erosion on this time scale, and it would be necessary to know the initial geometry of coastlines to calculate an eroded volume.</p><p>Volcanic islands, as geomorphological objects, seem to be very good objects of study to remedy these limitations. Indeed, many young volcanic islands are made of only one central edifice with a strong radial symmetry despite its degradation by erosion [4,5]. By knowing the age of an island and by comparing reconstructed shape with current shape, we can calculate a total eroded volume and an integrated average coastal erosion rate on the age of the island. Moreover, due to their geographical, petrological and tectonic diversity, volcanic islands allow to compare the influence of different factors on long-term coastal erosion, such as climate, wave direction and height, rock resistance or vertical movements. Thus, we will be able to prioritize them to propose coastal erosion laws that would applicable to all rocky coasts.</p><p>Here we built on previous works that have used aerial geospatial databases to reconstruct the initial shape of these islands [6,7] but we improve this approach by using offshore topographic data to determine the maximum and initial extension of their coasts. From both onshore and offshore topographies, we determine a long-term mean coastal erosion rate and we quantify precisely its uncertainty. Using the example of Corvo Island, in the Azores archipelago, we show how our approach allows us to obtain first estimates of long-term coastal erosion rate around this island.</p><p> </p><p><strong>References</strong></p><p> </p><p>[1] Landemaine V. (2016). Ph.D. thesis, University of Rouen.</p><p>[2] Rachold V., Grigoriev M.N., Are F.E., Solomon S., Reimnitz E., Kassens H., Antonow M. (2000). International Journal of Earth Sciences, 89(3), 450-460.</p><p>[3] Prémaillon M. (2018). Ph.D. thesis, University of Toulouse.</p><p>[4] Karátson D., Favalli M., Tarquini S., Fornaciai A., Wörner G. (2010). Journal of Volcanology and Geothermal Research, 193, 171-181.</p><p>[5] Favalli M., Karátson D., Yepes J., NannipierI L. (2014). Geomorphology, 221, 139-149.</p><p>[6] Lahitte P., Samper A., Quidelleur X. (2012). Geomorphology, 136, 148-164.</p><p>[7] Karátson D., Yepes J., Favalli M., Rodríguez-Peces M.J., Fornaciai A. (2016). Geomorphology, 253, 123-134.</p>


Sign in / Sign up

Export Citation Format

Share Document