scholarly journals 3-[(2,4-dihydroxy-3,3-dimethylbutanoyl)amino]propanoic acid (Vitamin B5): Its Synthesis, Transformation into Coenzyme A and Role in Disease

2021 ◽  
Vol 2 (1) ◽  
pp. 102-115
Author(s):  
Maliha Imami

This is a paper on Vitamin B5, it’s role in coenzyme A synthesis and how deficiency of B5 can have catastrophic consequences of human health. In this review, the process of pantothenate synthesis in bacteria and plants will be explored, followed by the role of B5 in the synthesis of coenzyme A (CoA). Understanding these mechanisms is of critical importance to nutritional and clinical authorities to aid the formation of guidelines that promote good health and clinical treatment. The biosynthesis pathway of pantothenate in pathogenic bacteria is of particular interest in the future design of antibiotic drugs as it contains many potential enzyme targets that are absent and unnecessary in humans. The importance of B5 and the CoA synthesis pathway is highlighted via a discussion of diseases that result or are linked with improper functioning of these systems. Subsequently, the paper explores the benefits of B5 supplementation for cholesterol and inflammation reduction and immune response during tuberculosis infection. The paper then explores the prevalence of poor vitamin B5 intake in certain populations to highlight where B5 consumption increases or supplementation should be promoted.

2014 ◽  
Vol 42 (4) ◽  
pp. 1056-1062 ◽  
Author(s):  
Hongorzul Davaapil ◽  
Yugo Tsuchiya ◽  
Ivan Gout

In all living organisms, CoA (coenzyme A) is synthesized in a highly conserved process that requires pantothenic acid (vitamin B5), cysteine and ATP. CoA is uniquely designed to function as an acyl group carrier and a carbonyl-activating group in diverse biochemical reactions. The role of CoA and its thioester derivatives, including acetyl-CoA, malonyl-CoA and HMG-CoA (3-hydroxy-3-methylglutaryl-CoA), in the regulation of cellular metabolism has been extensively studied and documented. The main purpose of the present review is to summarize current knowledge on extracellular and intracellular signalling functions of CoA/CoA thioesters and to speculate on future developments in this area of research.


Author(s):  
Bisma Laeeque

Retinol and Tocopherol are commonly known as fat soluble Vitamin A and D. This research was undertaken with the objective to study Vitamin A and D’s effect in combating smog caused illness among females. This case report highlights diseases caused among young woman of Lahore due to smog. Hypothesis formulated for this study was accepted after testing that intake of daily-recommended amount of Vitamin A and D by females helps them in fighting diseases caused by smog. An intervention based on Food and Nutrition Board’s Recommended Dietary Allowances (RDAs) was planned. After the analysis of data by SPSS and excel, it was indicated that women could fight smog caused diseases better by including Vitamin A and D in their daily diet. It was also found that a strong positive correlation existed between good health condition among females and intake of Vitamin A and D.


Author(s):  
Pramod Dhakal ◽  
Ankit a Achary ◽  
Vedamurthy Joshi

Bioenhancers are drug facilitator which do not show the typical drug activity but in combination to enhance the activity of other molecule in several way including increase the bioavailability of drug across the membrane, potentiating the drug molecules by conformational interaction, acting as receptor for drug molecules and making target cell more receptive to drugs and promote and increase the bioactivity or bioavailability or the uptake of drugs in combination therapy. The objective of the present study was to evaluate the antibacterial and activity of combination in Azadirachta indica extract with cow urine distillate and pepper extract against common pathogenic bacteria, a causative agent of watery diarrhea. It has been found that Indian indigenous cow urine and its distillate also possess bioenhancing ability. Bioenhancing role of cow urine distillate (CUD) and pepper extract was investigated on antibacterial activity of ethanol extract of Azadirachta indica. Antibacterial activity of ethanol extract neem alone and in combination with CUD and pepper extract were determined the ATCC strains against Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa and E-coli by cup plate diffusion method. Ethanol extract of neem has showed more effect on P. aeruginosa, E-coli than S. aureus and K. pneumonia with combination of CUD and pepper extract. CUD and pepper did not show any inhibition of test bacteria in low concentration. The antibacterial effect of combination of extract and CUD was higher than the inhibition caused by extract alone and is suggestive of the bioenhancing role of cow urine distillate and pepper. Moreover, inhibition of test bacteria was observed with less concentration of extract on combining with CUD


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1083
Author(s):  
Adhirath Sikand ◽  
Malgorzata Jaszczur ◽  
Linda B. Bloom ◽  
Roger Woodgate ◽  
Michael M. Cox ◽  
...  

In the mid 1970s, Miroslav Radman and Evelyn Witkin proposed that Escherichia coli must encode a specialized error-prone DNA polymerase (pol) to account for the 100-fold increase in mutations accompanying induction of the SOS regulon. By the late 1980s, genetic studies showed that SOS mutagenesis required the presence of two “UV mutagenesis” genes, umuC and umuD, along with recA. Guided by the genetics, decades of biochemical studies have defined the predicted error-prone DNA polymerase as an activated complex of these three gene products, assembled as a mutasome, pol V Mut = UmuD’2C-RecA-ATP. Here, we explore the role of the β-sliding processivity clamp on the efficiency of pol V Mut-catalyzed DNA synthesis on undamaged DNA and during translesion DNA synthesis (TLS). Primer elongation efficiencies and TLS were strongly enhanced in the presence of β. The results suggest that β may have two stabilizing roles: its canonical role in tethering the pol at a primer-3’-terminus, and a possible second role in inhibiting pol V Mut’s ATPase to reduce the rate of mutasome-DNA dissociation. The identification of umuC, umuD, and recA homologs in numerous strains of pathogenic bacteria and plasmids will ensure the long and productive continuation of the genetic and biochemical journey initiated by Radman and Witkin.


1982 ◽  
Vol 257 (15) ◽  
pp. 8738-8744
Author(s):  
F G Cánovas ◽  
F García-Carmona ◽  
J V Sánchez ◽  
J L Pastor ◽  
J A Teruel

2021 ◽  
Vol 9 (3) ◽  
pp. 509
Author(s):  
Amanda Carroll-Portillo ◽  
Henry C. Lin

Conventional phage therapy using bacteriophages (phages) for specific targeting of pathogenic bacteria is not always useful as a therapeutic for gastrointestinal (GI) dysfunction. Complex dysbiotic GI disorders such as small intestinal bowel overgrowth (SIBO), ulcerative colitis (UC), or Crohn’s disease (CD) are even more difficult to treat as these conditions have shifts in multiple populations of bacteria within the microbiome. Such community-level structural changes in the gut microbiota may require an alternative to conventional phage therapy such as fecal virome transfer or a phage cocktail capable of targeting multiple bacterial species. Additionally, manipulation of the GI microenvironment may enhance beneficial bacteria–phage interactions during treatment. Mucin, produced along the entire length of the GI tract to protect the underlying mucosa, is a prominent contributor to the GI microenvironment and may facilitate bacteria–phage interactions in multiple ways, potentially serving as an adjunct during phage therapy. In this review, we will describe what is known about the role of mucin within the GI tract and how its facilitation of bacteria–phage interactions should be considered in any effort directed at optimizing effectiveness of a phage therapy for gastrointestinal dysbiosis.


Sign in / Sign up

Export Citation Format

Share Document