scholarly journals Removal of Congo Red from Aqueous Solution by Circulating Fluidized Bed(CFB)

Author(s):  
Hamza Q. Ali ◽  
Ahmed A. Mohammed

In this study circulating fluidized bed was adopted to remove of Congo Red from wastewater using Eichhornia crassipes as a adsorbent. Solution flow rate(6,12 and 18)l/hr, bed height(2,4 and 6) cm and Congo Red initaial concentration (10,25 and 50)mg/l were examined in experiments to show their effects on breakthrough curves and time required to reach the adsorbent to fully saturated curve. The mass transfer coefficient "KL"decreased with decreasing the liquid flow rate. The minimum fluidization velocities of bed found equal to 1.6, 2, 2.5 mm/s for heights of 2, 4,6 cm respectively. The increasing of the bed height will increase the contact time of the solute in the bed, and these improve the solute removal efficiency. the increasing in flow rate and initial concentration will increase the mass transfer rate.

2019 ◽  
Vol 20 (4) ◽  
pp. 55-60
Author(s):  
Israa Sabah ◽  
Abeer I. Alwared

The purpose of this paper is to examine absorbance for the removal of the Red Congo using wheat husk as a biological pesticide. Several experiments have been conducted with the aim of configuring breakthrough data in a fluidized bed reactor. The minimum fluidized velocities of the bed were found to be 0.031 mm/s for mish sizes of (250) µm diameter with study the mass transfer be calculated KL values. The results showed a well-fitting with the experimental data. Different operating conditions were selected: bed height (2, 5 and 10) cm, flow rate (90, 100and 120) ml/sec and particle diameter (250, 600, 1000) µm. The breakthrough curves were plotted for Congo Red, Values showed that the lower the bed, the lower the number of adsorbents and the potential of the weak bed to condense the density of the solution, which also increases the flow rate and will increase the mass transfer rate.


2020 ◽  
Vol 71 (1) ◽  
pp. 1-12
Author(s):  
Salman H. Abbas ◽  
Younis M. Younis ◽  
Mohammed K. Hussain ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor ◽  
...  

The biosorption performance of both batch and liquid-solid fluidized bed operations of dead fungal biomass type (Agaricusbisporus ) for removal of methylene blue from aqueous solution was investigated. In batch system, the adsorption capacity and removal efficiency of dead fungal biomass were evaluated. In fluidized bed system, the experiments were conducted to study the effects of important parameters such as particle size (701-1400�m), initial dye concentration(10-100 mg/L), bed depth (5-15 cm) and solution flow rate (5-20 ml/min) on breakthrough curves. In batch method, the experimental data was modeled using several models (Langmuir,Freundlich, Temkin and Dubinin-Radushkviechmodels) to study equilibrium isotherms, the experimental data followed Langmuir model and the results showed that the maximum adsorption capacity obtained was (28.90, 24.15, 21.23 mg/g) at mean particle size (0.786, 0.935, 1.280 mm) respectively. In Fluidized-bed method, the results show that the total ion uptake and the overall capacity will be decreased with increasing flow rate and increased with increasing initial concentrations, bed depth and decreasing particle size.


2019 ◽  
Vol 12 (3) ◽  
pp. 135-143 ◽  
Author(s):  
Fatin Abdul_kareem Ashoor ◽  
Amer D. Zmat ◽  
Muthanna H. AlDahhan

A lab scale pellet reactor (PR) was designed and fabricated to carry out extensive investigations on the removal efficiency of the hardness of groundwater.  The groundwater of 2200 – 2600 mg/L hardness was collected from Abdulla Ibnalhassan wells area located at the west desert of Al-Shinafiyah district (70 km to the southwest of Al-Dewaniyah city, Iraq). Both hydrodynamic parameters of the pellet reactor (porosity and fluidized bed height) and the parameters of calcium carbonate crystallization process (calcium carbonate equilibrium, pellet size, and density) were modeled and compared with the experimental results of the lab scale pellet reactor. The comparison showed that fair agreement between modeled and measured results was observed. The removal efficiency of both calcium and magnesium ions were 62.5-99% and 83-99% respectively. The removal efficiency was found to be strongly dependent on pH and the ratio of NaOH solution flow rate to the groundwater flow rate in the pellet reactor.


Author(s):  
Rahul Bhujbal ◽  
Sanjay Nakate ◽  
Sunil V. Dingare

Abstract The refrigeration systems are used in domestic and commercial freezing applications. These systems are needed to be used energy efficiently to get the economic operation condition. The vapor compression refrigeration cycle (VCR) is getting replaced by vapor absorption refrigeration system (VARS) as they can use low grade energy. This VARS can be used by making use of waste energy in the form of heat which is readily available for many applications. Performance of the VARS is dependent on the generator and absorber performance. In absorber it is based on the amount of refrigerant absorbed and the solution flow rate. Experimental and Numerical study of bubble absorber and effect of nanoparticle on ammonia water mass transfer is carried out. In this study, different designs for the absorber chamber are viewed and compared together, based on the research did earlier. Looking at the aspects of bubble type absorber designs, these designs give better mass transfer performance as compared to other designs. These designs may be improved to get the energy efficient design of the absorber. Present study includes the enhancement of mass transfer rate by the addition of nanoparticles using aluminum oxide (Al2O3). Here, sparged vessels with NH3-H2O binary fluid are arranged with varying percentage of nanoparticle (Al2O3). This study includes the study of mass transfer enhancements by using nanoparticles. Based on the experimental results carried out for the varying mass flow rates it is found that the mass transfer rate is enhanced significantly, it is because the interfacial area is enhanced by the addition of nanoparticles to the base fluids.


2003 ◽  
Vol 57 (7-8) ◽  
pp. 326-329 ◽  
Author(s):  
Srdjan Pejanovic

The hydrodynamic properties of a three phase fluidized bed with low density inert spherical packing, fluidized by the interaction of a gas flowing upwards and a liquid flowing downwards through the column, were investigated. It was found that the pressure drop, liquid hold up and dynamic bed height increase with both increasing liquid and gas flow rate. While the dynamic bed height and minimum fluidization velocity remain unchanged, both the pressure drop and liquid hold up increase with increasing density of the packing. Therefore, an increase in packing density causes more intensive mass transfer between the fluid phases than packed columns. It was shown that increase of the liquid flow rate causes an increase of both the effective liquid and gas velocity through the fluidized bed, which may also improve mass transfer.


2018 ◽  
Vol 18 (2) ◽  
pp. 294 ◽  
Author(s):  
Amina Abdel Meguid Attia ◽  
Mona Abdel Hamid Shouman ◽  
Soheir Abdel Atty Khedr ◽  
Nevin Ahmed Hassan

The goal of this article describes the potential of utilizing jojoba leaves and also modified with chitosan as an efficient adsorption materials for Congo red dye removal in a fixed-bed column. Inlet dye concentration, feed flow rate and bed height had a great influence on determining the breakthrough curves. The percentage dye removal was found to be approximately 69% of coated jojoba leaves with flow rate 3 mL/min, initial concentration 50 mg/L and 4 cm bed height. The dye uptake capacity at equilibrium (qe) for coated jojoba leaves showed higher values than that found for jojoba leaves. On this basis, this implies that the amino groups played an important role during the adsorption process. Breakthrough curves were satisfactorily in good agreement with both Thomas and Yoon-Nelson models based on the values of correlation coefficient (R2 ≥ 96).This study serves as a good fundamental aspect of wastewater purification on jojoba leaves as a novel adsorbent for the uptake of Congo red dyes from aqueous solution in a column system.


2021 ◽  
Vol 235 (3) ◽  
pp. 281-294
Author(s):  
Abida Kausar ◽  
Haq Nawaz Bhatti ◽  
Munawar Iqbal

Abstract Sugarcane bagasse waste biomass (SBWB) efficacy for the adsorption of Zr(IV) was investigated in batch and column modes. The process variables i.e. pH 1–4 (A), adsorbent dosage 0.0–0.3 g (B), and Zr(IV) ions initial concentration 25–200 mg/L (C) were studied. The experiments were run under central composite design (CCD) and data was analysed by response surface methodology (RSM) methodology. The factor A, B, C, AB interaction and square factor A2, C2 affected the Zr(IV) ions adsorption onto SBWB. The quadratic model fitted well to the adsorption data with high R2 values. The effect of bed height, flow rate and Zr(IV) ions initial concentration was also studied for column mode adsorption and efficiency was evaluated by breakthrough curves as well as Bed Depth Service and Thomas models. Bed height and Zr(IV) ions initial concentration enhanced the adsorption of capacity of Zr(IV) ions, whereas flow rate reduced the column efficiency.


2016 ◽  
Vol 73 (10) ◽  
pp. 2361-2369 ◽  
Author(s):  
M. El-Sayed ◽  
M. Ramzi ◽  
R. Hosny ◽  
M. Fathy ◽  
Th. Abdel Moghny

A novel amorphous carbon thin film (ACTF) was prepared by hydrolyzing wood sawdust and delignificating the residue to obtain cellulose mass that was subjected to react with cobalt silicate nanoparticle as a catalyst under the influence of sudden concentrated sulfuric acid addition at 23 °C. The novel ACTF was obtained in the form of thin films like graphene sheets having winding surface. The prepared ACTF was characterized by Fourier-transform infrared spectrometer, transmission electron microscope (TEM), and Brunauer–Emmett–Teller (BET). The adsorption capacity of ACTF to remove oil from synthetic produced water was evaluated using the incorporation of Thomas and Yoon–Nelson models. The performance study is described through the breakthrough curves concept under relevant operating conditions such as column bed heights (3.8, 5 and 11 mm) and flow rate (0.5, 1 and 1.5 mL.min−1). It was found that the oil uptake mechanism is favoring higher bed height. Also, the highest bed capacity of 700 mg oil/g ACTF was achieved at 5 mm bed height, and 0.5 mL.min−1 flow rate. The results of breakthrough curve for oil adsorption was best described using the Yoon–Nelson model. Finally, the results illustrate that ACTF could be utilized effectively for oil removal from synthetic produced water in a fixed-bed column system.


Sign in / Sign up

Export Citation Format

Share Document