scholarly journals Essence of PTEN: a Broad-Spectrum Therapeutic Target in Cancer

2020 ◽  
Vol 11 (2) ◽  
pp. 9587-9603

The levels of protein tyrosine phosphorylation within a cell is regulated by protein tyrosine kinases and protein tyrosine phosphatases. These protein tyrosine phosphatases (PTP) can act both as positive and negative regulators during cell cycle progression and signal transduction. Phosphatase activity is shown by Phosphatase and Tensin homolog (PTEN) protein encoded by PTEN gene localized on human chromosome 10. Earlier findings established the role of PTEN as a tumor suppressor in Cowden’s disease, where PTEN mutations resulted in disease outcomes. Subsequent studies found the role of PTEN mutations in various human cancers, making it one of the vastly studied tumor suppressor genes. The current review has been planned to get a deeper insight into the potential role of PTEN in a variety of physiological processes involved in normal development like cell growth, migration, and differentiation along with the factors, regulation, and underlying mechanism.

2005 ◽  
Vol 185 (1) ◽  
pp. 19-33 ◽  
Author(s):  
Andrew W Stoker

A cornerstone of many cell-signalling events rests on reversible phosphorylation of tyrosine residues on proteins. The reversibility relies on the coordinated actions of protein tyrosine kinases and protein tyrosine phosphatases (PTPs), both of which exist as large protein families. This review focuses on the rapidly evolving field of the PTPs. We now know that rather than simply scavenging phosphotyrosine, the PTPs specifically regulate a wide range of signalling pathways. To illustrate this and to highlight current areas of agreement and contention in the field, this review will present our understanding of PTP action in selected areas and will present current knowledge surrounding the regulatory mechanisms that control PTP enzymes themselves. It will be seen that PTPs control diverse processes such as focal adhesion dynamics, cell–cell adhesion and insulin signalling, and their own actions are in turn regulated by dimerisation, phosphorylation and reversible oxidation.


1999 ◽  
Vol 77 (6) ◽  
pp. 493-505 ◽  
Author(s):  
Alexandre Angers-Loustau ◽  
Jean-François Côté ◽  
Michel L Tremblay

Signal transduction pathways are often seen as cascades of kinases, whereas phosphatases are relinquished to the housekeeping function of resetting the individual elements to a resting state. However, critical biological processes such as cellular migration require a coordinated and constant remodeling of the actin cytoskeleton as well as a rapid turnover of the cell-substratum linkages that necessitate the concomitant action of antagonistic enzymes. Tyrosine phosphorylation was long known to be involved in adhesion and de-adhesion mediated via the integrin receptors. As the roles of tyrosine kinases such as focal adhesion kinase, c-Src, and Csk in this pathway are being extensively studied, increasing evidence is emerging about the importance of protein tyrosine phosphatases (PTP). In this review we discuss examples of PTPs that were recently shown to play a role in cell adhesion and migration and their mechanism of action.Key words: protein tyrosine phosphatases (PTP), migration, adhesion, FAK, p130Cas, Src.


2019 ◽  
Vol 1866 (1) ◽  
pp. 102-113 ◽  
Author(s):  
Caroline E. Nunes-Xavier ◽  
Janire Mingo ◽  
José I. López ◽  
Rafael Pulido

Sign in / Sign up

Export Citation Format

Share Document