scholarly journals Influence of Radiative Heat Energy on the MHD Flow of Cu-kerosene Nanofluid Over a Vertical Plate: Laplace Transform Technique

2021 ◽  
Vol 12 (5) ◽  
pp. 6234-6251

The present study reveals the heat transfer phenomena of magnetohydrodynamic (MHD) nanofluid over a moving vertical plate due to the interaction of thermal radiation. Due to enhancing thermal properties, instead of water, kerosene is treated as the base fluid with the inclusion of Cu (Copper) nanoparticles. In addition to that, for the nanofluid viscosity and thermal conductivity the Einstein’s model and Mintsa’s model, respectively. The transformed models for the governing equations proposed here are handled analytically employing Laplace Transform Technique. However, the variations of various parameters are obtained because the constructed flow phenomena are presented via graph. In the particular case, the consequence obtained is compared with the earlier study to get the validation which provides a road map for further investigation.

2013 ◽  
Vol 62 (3) ◽  
Author(s):  
Muhamad Najib Zakaria ◽  
Abid Hussanan ◽  
Ilyas Khan ◽  
Sharidan Shafie

The present paper is on study of the influence of radiation on unsteady free convection flow of Brinkman type fluid near a vertical plate containing a ramped temperature profile. Using the appropriate variables, the basic governing equations are reduced to nondimensional equations valid with the imposed initial and boundary conditions. The exact solutions are obtained by using Laplace transform technique. The influence of radiation near a ramped temperature plate is also compared with the flow near a plate with constant temperature. The numerical computations are carried out for various values of the physical parameters such as velocity, temperature, skin friction and Nusselt number and presented graphically.


2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Nadeem Ahmad Sheikh ◽  
Farhad Ali ◽  
Ilyas Khan ◽  
Muhammad Saqib ◽  
Arshad Khan

The present analysis represents the MHD flow of micropolar fluid past an oscillating infinite vertical plate embedded in porous media. At the plate, free convections are caused due to the differences in temperature and concentration. Therefore, the combined effect of radiative heat and mass transfer is taken into account. Partial differential equations are used in the mathematical formulation of a micropolar fluid. The system of dimensional governing equations is reduced to dimensionless form by means of dimensional analysis. The Laplace transform technique is applied to obtain the exact solutions for velocity, temperature, and concentration. In order to highlight the flow behavior, numerical computation and graphical illustration are carried out. Furthermore, the corresponding skin friction and wall couple stress are calculated.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Arpita Jain

This paper presents an analysis of combined heat and mass transfer flow past an oscillating vertical plate under the action of radiation effects and chemical reaction when heat is supplied to the plate at constant rate. The governing equations are solved in closed form by Laplace-transform technique. The results are obtained for temperature, concentration, velocity, skin friction, Nusselt number, and Sherwood number. The effects of various parameters on flow variables are illustrated graphically, and the physical aspects of the problem are discussed.


2021 ◽  
Vol 11 (6) ◽  
pp. 13790-13805

The problem of unsteady natural convective nanofluid flow along with an exponentially accelerating vertical plate under the influence of transverse magnetic field is discussed in two important cases when the magnetic lines of force are fixed relative to the fluid or the moving plate. The governing equations are transformed into dimensionless form and tackled with the usual time-frequency Laplace transform technique. The impacts of various parameters on the heat transfer characteristics and nanofluid flow transport with thermal radiation, heat generation/absorption, and nanoparticle volume concentration have been studied through graphs.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ashish Paul

This paper is concerned with analytical solution of one-dimensional unsteady laminar boundary layer MHD flow of a viscous incompressible fluid past an exponentially accelerated infinite vertical plate in presence of transverse magnetic field. The vertical plate and the medium of flow are considered to be porous. The fluid is assumed to be optically thin and the magnetic Reynolds number is considered small enough to neglect the induced hydromagnetic effects. The governing boundary layer equations are first converted to dimensionless form and then solved by Laplace transform technique. Numerical values of transient velocity, temperature, skin friction, and Nusselt number are illustrated and are presented in graphs for various sets of physical parametric values, namely, Grashof number, accelerating parameter, suction parameter, permeability parameter, radiation parameter, magnetic parameter, and time. It is found that the velocity decreases with increases of the suction parameter for both cases of cooling and heating of the porous plate whereas skin friction increases with increase of suction parameter.


2008 ◽  
Vol 35 (4) ◽  
pp. 323-331 ◽  
Author(s):  
R. Muthucumaraswamy ◽  
K.E. Sathappan ◽  
R. Natarajan

An exact solution to the problem of flow past an exponentially accelerated infinite vertical plate with variable temperature is analyzed. The temperature of the plate is raised linearly with time t. The dimensionless governing equations are solved using Laplace-transform technique. The velocity and temperature profiles are studied for different physical parameters like thermal Grashof number Gr, time and an accelerating parameter a. It is observed that the velocity increases with increasing values of a or Gr.


2013 ◽  
Vol 40 (3) ◽  
pp. 385-402 ◽  
Author(s):  
Rudra Deka ◽  
Ashish Paul

This paper presents an analytical solution of unsteady one-dimensional natural convective flow of a viscous incompressible and electrically conducting fluid past an infinite vertical cylinder with constant temperature and magnetic field, applied normal to the direction of flow. Exact solutions of dimensionless unsteady linear governing equations are obtained by using Laplace transform technique. Numerical computations for the transient velocity, temperature, skin-friction, Nusselt number are computed and presented in graphs for various set of physical parametric values viz; Grashof number, Prandtl number, magnetic parameter and time.


2010 ◽  
Vol 37 (3) ◽  
pp. 189-202 ◽  
Author(s):  
R. Muthucumaraswamy ◽  
Tina Lal ◽  
D. Ranganayakulu

An exact analysis of rotation effects on unsteady flow of an incompressible and electrically conducting fluid past a uniformly accelerated infinite isothermal vertical plate, under the action of transversely applied magnetic field has been presented. The plate temperature is raised to Tw and the concentration level near the plate is also raised to C?w . The dimensionless governing equations are solved using Laplace-transform technique. The velocity profiles, temperature and concentration are studied for different physical parameters like thermal Grashof number, mass Grashof number, Schmidt number, Prandtl number and time. It is observed that the velocity increases with increasing values of thermal Grashof number or mass Grashof number. It is also observed that the velocity increases with decreasing magnetic field parameter.


2009 ◽  
Vol 14 (1) ◽  
pp. 73-84 ◽  
Author(s):  
G. Palani ◽  
I. A. Abbas

This paper investigates the combined effects of magnetohydrodynamics and radiation on free convection flow past an impulsively started isothermal vertical plate with Rosseland diffusion approximation. The fluid considered is a gray, absorbingemitting radiation but a non-scattering medium, with approximate transformations the boundary layer governing the flow are reduced to non-dimensional equations valid in the free convection regime. The dimensionless governing equations are solved by the finite element method.


2016 ◽  
Vol 78 (4-4) ◽  
Author(s):  
Abid Hussanan ◽  
Mohd Zuki Salleh ◽  
Ilyas Khan ◽  
Razman Mat Tahar

This study investigates the unsteady heat transfer flow of a non-Newtonian Casson fluid over an oscillating vertical plate with Newtonian heating on the wall under the effects of thermal radiation. With the help of non-dimensional variables, governing equations are written into dimensionless form and then solved analytically by Laplace transform technique to find the solutions of temperature and velocity. The corresponding solutions of Nusselt number and skin friction are also calculated. The solution in term of viscous fluid is recovered as a limiting case of this work. The effects of the pertinent parameters on temperature and velocity are presented graphically and discussed details in this paper.  


Sign in / Sign up

Export Citation Format

Share Document