scholarly journals Green Synthesis of Reduced Graphene Nanosheets Using Leaf Extract of Tridax procumbens and its Potential In-Vitro Biological Activities

2020 ◽  
Vol 2 (1) ◽  
pp. 93

Graphene oxide nanoparticles has found immense application in bio therapeutics owing to its biocompatibility and enhanced effectiveness in drug delivery. The present study investigates the green synthesis of reduced graphene oxide using leaf extract using Tridax procumbens and testing its in-vitro biological activities. The biosynthesized reduced graphene oxide (rGO) was characterized by various spectroscopic and microscopic techniques. UV-vis spectroscopic analysis primarily detected the shift in the absorption peak from 232 to 287 nm confirming the reduction of TP-rGO. FTIR spectra of TP-rGO confirmed effective deoxygenation of GO assisted by bioactive molecules present in the leaf extract. Raman spectroscopic analysis identified successful reduction of GO through the presence of D band at 1329 cm-1 and G band at 1577 cm-1. XRD spectra of TP-rGO showed diffraction peak 2θ at 25o confirming the presence of reduced GO. SEM analysis revealed the presence of graphene nanosheets appearing as large aggregated structure. The bioreduced rGO showed anti-oxidant effect against DPPH radical observed in concentration dependent manner. The TP-rGO nanosheets exhibited bactericidal effect against gram positive bacteria: B.subitils (18 mm) and S. epidermis (9 mm) and gram negative bacteria: E.coli (14 mm) and P. aeruginosa (6 mm) at 100 µg/ml confirming the enhanced anti-bacterial effects of TP-rGO against gram positive pathogens. Hence, it is highlighted that leaf extract of Tridax procumbens act as green reducing agent for the successful biosynthesis of rGO nanosheets demonstrating potential in-vitro biological activities and has great scope in the preparation of nano drugs for the treatment of various diseases.

2020 ◽  
Vol 11 (3) ◽  
pp. 9975-9984

Graphene oxide nanoparticles have found immense application in biotherapeutics owing to its biocompatibility and enhanced effectiveness in drug delivery. The present study investigates the green synthesis of reduced graphene oxide (rGO) using leaf extract using Tridax procumbens and testing its in-vitro biological activities. The biosynthesized TP-rGO was characterized by various spectroscopic and microscopic techniques. UV-vis spectroscopic primarily detected the absorption peak from 232 to 287 nm. XRD spectra showed diffraction peak 2θ at 25o, confirming the presence of reduced GO. FTIR and Raman spectra confirmed effective deoxygenation of GO assisted by bioactive molecules present in the leaf extract. EDAX revealed the presence of carbon (74%) and oxygen (24%). TEM analysis revealed the presence of graphene nanosheets structure appearing as a thin sheet stacked with one another. The bioreduced rGO showed an antioxidant effect against DPPH radical observed in a concentration-dependent manner. The TP-rGO nanosheets were confirming the enhanced antibacterial effects against gram-positive pathogens than gram-negative bacteria. Hence, it is highlighted that leaf extract of T. procumbens act as a green, reducing agent for the successful biosynthesis of rGO nanosheets demonstrating potential in-vitro biological activities and has great scope in the preparation of nano drugs for the treatment of various diseases.


RSC Advances ◽  
2015 ◽  
Vol 5 (111) ◽  
pp. 91532-91543 ◽  
Author(s):  
Monireh Atarod ◽  
Mahmoud Nasrollahzadeh ◽  
S. Mohammad Sajadi

Herein, we describe a green and eco-friendly synthesis method for preparing a Cu/RGO/Fe3O4 nanocomposite through biological reduction of graphene oxide and Cu2+, Fe3+ ions using Euphorbia wallichii leaf extract as a reducing and stabilizing agent.


2017 ◽  
Vol 7 ◽  
pp. 184798041770279 ◽  
Author(s):  
Xin Zhu ◽  
Xiaolin Xu ◽  
Feng Liu ◽  
Jizhong Jin ◽  
Lintao Liu ◽  
...  

A simple and green approach for the synthesis of polyphenol-functionalized reduced graphene oxide nanosheets is demonstrated, using leaf extract of Citrullus colocynthis as a deoxygenating agent. The C. colocynthis polyphenols also play a significant role as a stabilizing agent, preventing agglomeration of reduced graphene oxide nanosheets. Cytotoxicity tests showed that the both graphene oxide and Citrullus colocynthis polyphenol-stabilized reduced graphene oxide were toxic to DU145 cells; the cytotoxicity was dose dependent. Hence, C. colocynthis–mediated reduced graphene oxide may be an ideal anticancer material for biological study applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sajad Bahrami ◽  
Nafiseh Baheiraei ◽  
Mostafa Shahrezaee

AbstractA variety of bone-related diseases and injures and limitations of traditional regeneration methods require new tissue substitutes. Tissue engineering and regeneration combined with nanomedicine can provide different natural or synthetic and combined scaffolds with bone mimicking properties for implantation in the injured area. In this study, we synthesized collagen (Col) and reduced graphene oxide coated collagen (Col-rGO) scaffolds, and we evaluated their in vitro and in vivo effects on bone tissue repair. Col and Col-rGO scaffolds were synthesized by chemical crosslinking and freeze-drying methods. The surface topography, and the mechanical and chemical properties of scaffolds were characterized, showing three-dimensional (3D) porous scaffolds and successful coating of rGO on Col. The rGO coating enhanced the mechanical strength of Col-rGO scaffolds to a greater extent than Col scaffolds by 2.8 times. Furthermore, Col-rGO scaffolds confirmed that graphene addition induced no cytotoxic effects and enhanced the viability and proliferation of human bone marrow-derived mesenchymal stem cells (hBMSCs) with 3D adherence and expansion. Finally, scaffold implantation into rabbit cranial bone defects for 12 weeks showed increased bone formation, confirmed by Hematoxylin–Eosin (H&E) and alizarin red staining. Overall, the study showed that rGO coating improves Col scaffold properties and could be a promising implant for bone injuries.


2021 ◽  
Vol 151 ◽  
pp. 106107
Author(s):  
Soolmaz Soleimani ◽  
Ali Jannesari ◽  
Morteza Yousefzadi ◽  
Arash Ghaderi ◽  
Adnan Shahdadi

2021 ◽  
Author(s):  
Ashwini Patil

Abstract The present research deals with the development of a novel bioinspired in situ fabrication of reduced graphene oxide (rGO)-silver nanoparticle (AgNPs) nanocomposite (rGO@AgNCs) using microbes namely Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA). The fabricated rGO@AgNCs were characterized using Ultraviolet-visible (UV) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), particle size analysis, polydispersity index (PDI), zeta potential analysis, energy dispersive X-ray analysis (EDAX), Raman spectroscopy, powder X-ray diffraction (PXRD), high-resolution transmission electron microscopy (HR-TEM) analysis, etc. Furthermore, the rGO@AgNCs-PA and rGO@AgNCs-SA interaction with serum protein, pH stability study, and in vitro dissolution of AgNPs were also performed. The research findings of the proposed study demonstrated the simultaneous reduction of graphene oxide (GO) and AgNPs and the formation of rGO@AgNCs in the presence of microbes. The in vitro dissolution studies of rGO@AgNCs composites showed better AgNPs dissolution with controlled release and offered remarkable matrix integrity throughout the dissolution period. The size and stability of rGO@AgNCs-PA and rGO@AgNCs-SA had no significant changes at physiological pH 7.4. A minimal decrease in the zeta potential of rGO@AgNCs was observed, which may be due to the weak interaction of nanocomposites and albumin. The antibacterial application of the synthesized nanocomposite was evaluated against a pathogenic mastitis-forming bacterium. The obtained results suggested an admirable antibacterial activity of synthesized nanocomposites against the tested microbes. This knowledge will assist the scientific fraternity in designing novel antibacterial agents with enhanced antibacterial activity against various veterinary pathogens in near future.


Sign in / Sign up

Export Citation Format

Share Document