scholarly journals Productivity of seedlings of Scots pine on alluvial sands of natural and man-made origin

Author(s):  
F.M Brovko ◽  
D.F Brovko ◽  
O.F Brovko ◽  
V.Yu Yukhnovskyi

Purpose. To find out quantitative physical and water indicators for which there are significant changes in forest vegetation properties in alluvial sands, as well as to trace their impact on the formation of pine seedling root systems and the accumulation of aboveground phytomass in their plantations. Methodology. The chemical properties of sandy soils were determined taking into account the current requirements of ISO, and their physical and water properties using volumetric cylinders, followed by the calculation of their density, porosity, as well as the coefficients of water content and aeration. The root population of the upper meter layer of sands was determined by the method of monoliths, and plant productivity was assessed by phytomass of medium model trees (7-year-old seedlings, plots 14) and by biometric indicators (22-year-old seedlings, plots 59). Findings. It was found that on alluvial sands with a density of 1.501.66 g × cm-3 in their upper meter thickness, 7-year-old seedlings of Scots pine form a superficial root system (1341.8 g × m-2), which provides accumulation of 2558 kg × ha-1 of aboveground phytomass in seedlings. As the density of sands increases, the production of seedling phytomass decreases. In the case of an increase in density by 14% (1.521.72 g × cm-3), there is a decrease in the mass of roots, in a meter-thick layer of sand (by 53.4%) and aboveground phytomass (by 36%). An increase in the density of sands by 510% with its maximum values (1.741.79 g × cm-3) in a 1030 cm layer causes a decrease in the mass of pine roots by 64.1%. The roots of pine seedlings, for such a density of sand, are not able to inhabit the inter-row space, as indicated by their content in the upper 20-cm layer of sand (2% of the mass of small roots recorded in a one-meter thickness). The phytomass of aboveground organs decreased by 81%, and the seedlings themselves were marked by dwarf growth (were grown by V class of productivity). On sands covered with humus mass of zonal soils, the one meter thickness contained fewer (by 51.4%) pine roots (482.8 g × m-2) than on the control. The share of small roots was smaller (by 61.5%) and that of coarse roots was higher (by 21.5%). Losses of aboveground phytomass per unit area in pine seedlings growing under such conditions can reach 31%, due to the compaction of sands at a depth of 2550 cm (1.671.72 g × cm-3) when they are covered by humus mass and row spacing are overgrown with herbaceous plants (root mass in 60-cm profile 3147 g × m-2) in the phase of their individual growth. Originality. Quantitative indicators of density, porosity and coefficients of water content and aeration of alluvial sands of natural and man-made origin are shown for which the seedlings of Scots pine feature delay in the formation of full-fledged root systems of the surface type, which is reflected in a decrease in the productivity of pine plantations cultivated on the sands, up to the visual manifestation of their dwarf growth. Practical value. The quantitative indicators of their physical and water properties obtained for alluvial sands explain the changes occurring in the structure of the root systems of Scots pine seedlings and the productivity of their aboveground organs. Maintaining the density of sands in the range of 1.501.66 g × cm-3 will allow growing pine seedlings on sands without covering their surface with humus mass, and no-till pre-planting loosening of sands in the rows of future crops allows ensuring the cultivation of multifunctional pine plantations.

1992 ◽  
Vol 57 ◽  
Author(s):  
D. Maddelein ◽  
N. Lust

The  study of a seventy years old stand of Scots pine on drift sands proves that  Scots pine growth on these sites was and is still relatively good: average  diameter 27.6 cm, average height 19.4 m, standing volume 213 m3 and an annual increment  of 4.9 m3.ha-1.yr-1. All Scots pines  belong to the upper storey. Yet considerable differences in crown development  and vitality are observed. The current growth rate and the spontaneous  settlement of pine seedlings under canopy show the ideal conditions for the  creation of a high forest with reserves. Anyway a rotation period of more  than 70 years is recommendable.     On several places a consolidated regeneration of Scots pine seedlings under  canopy occur. Groups with a stem number of 700 to 3,500 seedlings per are, ranging  in age from 3 to 11 years and in height from 10 to 170 cm, are present. This  Scots pine regeneration has developed in a normal mor humus layer and in a  dense Deschampsia mat.      Broadleaved regeneration is not so abundant, and consists for 75 % of black  cherry. Absence of seed trees, browsing damage and the exclusive character of  black cherry are the limiting factors for the installation and survival of  valuable indigenous species, such as pedunculate oak.     Provided that black cherry is removed and that the regeneration is  protected against wild damage, it is possible to create a mixed forest  dominated by Scots pine but with a considerable admixture of indigenous  broadleaved trees. However, if black cherry will not be sufficiently  controlled, it can be expected that in a first phase black cherry will  dominate the understorey, that it will prevent the regeneration of all other  species and that, very soon, it will form an almost single-species dominated  stage in forest succession.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 846
Author(s):  
Aleksandra Halarewicz ◽  
Antoni Szumny ◽  
Paulina Bączek

In temperate European forests invaded by Prunus serotina Ehrh. (black cherry), a reduction in the spontaneous regeneration capacity of Pinus sylvestris L. (Scots pine) is observed. It could be caused by various factors, including allelopathic properties of this invasive plant. In this study the phytotoxic effect of P. serotina volatile compounds on P. sylvestris and the seasonal variation in this effect were assessed. Simple assays showed that volatiles emitted from P. serotina leaves significantly inhibited root growth of P. sylvestris seedlings. Their negative effect on stem growth was much weaker. The strongest phytotoxic effect on Scots pine seedlings was caused by the volatiles emitted from the youngest black cherry leaves. In fresh foliage of P. serotina, nineteen volatile organic compounds were identified by gas chromatography–mass spectrometry (GC–MS). The dominant compound was benzaldehyde. On the basis of tests of linalool alone, it was found that this monoterpene present in the volatile fraction has a strong allelopathic potential and inhibits germination, root elongation and shoot elongation of pine seedlings. The results of our research suggest that volatile compounds from P. serotina leaves could limited survival of P. sylvestris individuals in the seedling phase.


1990 ◽  
Vol 20 (3) ◽  
pp. 280-284 ◽  
Author(s):  
Jarmo K. Holopainen

The responses of young Scots pine seedlings to mechanical apical meristem damage before and after 4 nights exposure to minimum night temperatures of −2.2 and −6.7 °C in controlled environment growth chambers were compared with control seedlings that were subjected or not to apical meristem damage and exposed to a minimum night temperature of 12 °C. The feeding damage caused by Lygus bugs was simulated by piercing the apical meristem of young pine seedlings with a hypodermic syringe needle and injecting a small drop of distilled water into the wound. At −6.7 °C increased numbers of dead seedlings were found. The proportion of seedlings with multiple leaders greatly increased after piercing, and about half of the seedlings subjected to the apical meristem damage had multiple leaders. The proportion of seedlings with multiple leaders and the number of leader shoots per seedling did not differ among seedlings subjected to apical meristem damage before or after the frost exposure. Short and twisted primary needles occurred in the basal parts of the new shoots in the seedlings with multiple leaders. Seedlings with necrotic needles were most often found after exposure to the night temperature of −6.7 °C. Shoot dry weight and length were significantly lower in seedlings subjected to apical meristem damage after frost exposure than in seedlings subjected to apical meristem damage before frost exposure or to no frost exposure. The results suggest that an increased reduction in growth is to be expected if Lygus bug attacks occur on pine seedlings that already suffer from frost injury.


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 560 ◽  
Author(s):  
Kateryna Davydenko ◽  
Justyna Nowakowska ◽  
Tomasz Kaluski ◽  
Magdalena Gawlak ◽  
Katarzyna Sadowska ◽  
...  

The fungal pathogen Fusarium circinatum is the causal agent of Pine Pitch Canker (PPC), a disease which seriously affects different species of pine in forests and nurseries worldwide. In Europe, the fungus affects pines in northern Spain and Portugal, and it has also been detected in France and Italy. Here, we report the findings of the first trial investigating the susceptibility of Polish provenances of Scots pine, Pinus sylvestris L., to infection by F. circinatum. In a greenhouse experiment, 16 Polish provenances of Scots pine were artificially inoculated with F. circinatum and with six other Fusarium species known to infect pine seedlings in nurseries. All pines proved highly susceptible to PPC and displayed different levels of susceptibility to the other Fusarium spp. tested. The findings obtained indicate the potentially strong threat of establishment of an invasive pathogen such as F. circinatum following unintentional introduction into Poland.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Hengxing Wang ◽  
Yulong He ◽  
Zufeng Shang ◽  
Chunpeng Han ◽  
Yilu Wang

We present the results of the reinforcement of plant root systems in surface soil in a model test to simulate actual precipitation conditions. In the test, Eleusine indica was selected as herbage to reinforce the soil. Based on the various moisture contents of plant roots in a pull-out test, a fitting formula describing the interfacial friction strength between the roots and soil and soil moisture content was obtained to explain the amount of slippage of the side slope during the process of rainfall. The experimental results showed that the root systems of plants successfully reinforced soil and stabilized the water content in the surface soil of a slope and that the occurrence time of landslides was delayed significantly in the grass-planting slope model. After the simulated rainfall started, the reinforcement effect of the plant roots changed. As the rainfall increased, the interfacial friction between the roots and the soil exhibited a negative power function relationship with the water content. These conclusions can be used as a reference for the design of plant slope protection and reinforcement.


2021 ◽  
Vol 285 ◽  
pp. 06004
Author(s):  
T. Kh. Gordeeva ◽  
O. V. Malyuta ◽  
N. M. Yatmanova ◽  
O. S. Labatorina ◽  
Meyrbek Uskenbay ugli Ibadullayev

The research of the physico-chemical, biological and toxicological parameters of sediments and soils reclaimed by them, as well as the analysis of the growth of Scots pine seedlings, suggests that the use of sediments as a soil ameliorant at forest reclamation sites is advisable.


Sign in / Sign up

Export Citation Format

Share Document