Analysis of methods for assessing the technical state of metal structures of oil and gas equipment based on the acoustic emission method

Author(s):  
D.A. Boreiko ◽  
◽  
D.Yu. Serikov ◽  
A.L. Smirnov ◽  
◽  
...  
2021 ◽  
Vol 2127 (1) ◽  
pp. 012044
Author(s):  
A Yu Poroykov ◽  
M O Sharikova ◽  
A Yu Marchenkov ◽  
V A Barat

Abstract The safety of rail transport, including passenger traffic, largely depends on the timely diagnosis of the state of the rail infrastructure. To determine the state of metal structures, the method of acoustic emission (AE) is used. It is based on the registration of elastic mechanical vibrations arising in the material of the controlled object from a defect. The AE method is highly informative, but the interpretation of measurement results often causes difficulties, especially when studying complex structural elements. In this paper, it is proposed to use the digital image correlation (DIC) method to study the defects of railway rails using the acoustic emission method. Visualization of defects using the DIC method will make it possible to better interpret the results of inspection by the acoustic emission method and to establish the relationship between the size of defects and the parameters of AE pulses.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2090
Author(s):  
Petr Louda ◽  
Artem Sharko ◽  
Dmitry Stepanchikov

An acoustic emission method for assessing the degree of degradation of mechanical properties under conditions of complex dynamic deformation stresses is proposed. It has been shown that changing the operating conditions of metal structures, peak loads, external collisions, and thermally changing loads, which cannot be taken into account, leads to uncertainty and unpredictable structural changes in the material. This in turn makes it difficult to identify the state of the structure material to ensure trouble-free operation of the equipment. Changes in the mechanical properties under difficult loading conditions are identified by polynomial approximation of the results of AE measurements and the construction of boundary curves separating the operability region from the fracture region. This is achieved by approximating the experimental dependences of the acoustic parameters for various types of loading. This approach significantly expands the capabilities of the technical means of identification systems of metal structures, and in particular, allows the current state of the equipment and its suitability for further operation to be assessed without stopping the equipment in real time. It is of interest not only to fix the damage, but also to diagnose the processes of reducing the mechanical properties during the operation of the equipment.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 20
Author(s):  
Justyna Zapała-Sławeta ◽  
Grzegorz Świt

The study analyzed the possibility of using the acoustic emission method to analyse the reaction of alkali with aggregate in the presence of lithium nitrate. Lithium nitrate is a chemical admixture used to reduce adverse effects of corrosion. The tests were carried out using mortars with reactive opal aggregate, stored under the conditions defined by ASTM C227. The acoustic activity of mortars with a corrosion inhibitor was referred to linear changes and microstructure of specimens in the initial reaction stages. The study found a low acoustic activity of mortars with lithium nitrate. Analysis of characteristic parameters of acoustic emission signals, combined with the observation of changes in the microstructure, made it possible to describe the corrosion processes. As the reaction progressed, signals with different characteristics were recorded, indicating aggregate cracking at the initial stage of the reaction, followed by cracking of the cement paste. The results, which were referred to the acoustic activity of reference mortars, confirmed that the reaction of opal aggregate with alkali was mitigated in mortars with lithium nitrate, and the applied acoustic emission method enabled the detection and monitoring of ASR progress.


2016 ◽  
Vol 837 ◽  
pp. 198-202
Author(s):  
Luboš Pazdera ◽  
Libor Topolář ◽  
Tomáš Vymazal ◽  
Petr Daněk ◽  
Jaroslav Smutny

The aim of the paper is focused on the analysis of the mechanical properties of the concrete specimens with plasticizer at three point bending test by the signal analysis of the acoustic emission signal. The evaluations were compared the measurement and the results obtained with theoretical presumptions. The Joint Time Frequency Analysis applied on measurement data and its evaluation is described. It is well known that the Acoustic Emission Method is a very sensitive method to determine active cracks into structure. However, evaluation of acoustic emission signals is very difficult. A non-traditional method was used to signal analysis of burst acoustic emission signals recorded during three point bending test.


2014 ◽  
Vol 7 (2) ◽  
pp. 703-709 ◽  
Author(s):  
Kazuho Mizuta ◽  
Yukio Nishizawa ◽  
Koji Sugimoto ◽  
Katsuya Okayama ◽  
Alan Hase

Sign in / Sign up

Export Citation Format

Share Document