scholarly journals Genetic diversity analysis of thirteen mungbean (Vigna radiata (L.) Wilczek) cultivars using RAPD markers

2013 ◽  
Vol 41 (2) ◽  
pp. 169-175 ◽  
Author(s):  
Sonia Khan Sony ◽  
Md Ahashan Habib ◽  
Mohammad Nurul Islam

Genetic diversity analysis among 13 mungbean cultivars from Bangladesh was performed through polymerase chain reaction (PCR) based random amplification of polymorphic DNA (RAPD). Out of 20 arbitrary decamer oligonucleotide primers used, 10 produced a total of 379 different bands with an average of 37.9 bands per primer. Based on the observed banding pattern all the primers were found to be 100% polymorphic. Band size of the amplicons ranged from 250 - 5000 bp. A total of 10 unique DNA fragments was amplified from the 13 mungbean cultivars genome. The values of pair-wise genetic distances ranged from 0.0700 - 1.0852, indicating the presence of wide genetic diversity. The highest genetic distance (1.0852) was found between cultivar BARI Mung-2 and 6 while the lowest (0.0700) between cultivar BINA Mung-2 and 7. Dendogram based on Nei’s genetic distance using Unweighted Pair Group Method of Arithmetic Means (UPGMA) has segregated the 13 mungbean cultivars into two major clusters. BARI Mung-1, 2, 3, 4 and 5 formed cluster 1 and BARI Mung-6, BINA Mung-1, 2, 7, 6, 4, 5 and 8 have made cluster 2. DOI: http://dx.doi.org/10.3329/bjb.v41i2.13444 Bangladesh J. Bot. 41(2): 169-175, 2012 (December)

1970 ◽  
Vol 34 (3) ◽  
pp. 493-503 ◽  
Author(s):  
KK Ghosh ◽  
ME Haque ◽  
S Parvin ◽  
F Akhter ◽  
MM Rahim

This investigation was aimed at exploring the genetic diversity and relationship among nine Brassica varieties, namely BARI Sharisha-12, Agrani, Sampad, BINA Sharisha-4, BINA Sharisha-5, BARI Sharisha-13, Daulot, Rai-5, Alboglabra using Random Amplified Polymorphic DNA (RAPD) markers. In total, 59 reproducible DNA bands were generated by four arbitrary selected primers of which 58 (98.03%) bands were proved to be polymorphic. These bands ranged from 212 to 30686 bp in size. The highest proportion of polymorphic loci and gene diversity values were 37.29% and 0.1373, respectively, for BARI Sharisha-12 and the lowest proportion of polymorphic loci and gene diversity values were 8.47% and 0.0318, 8.47% and 0.0382 for BINA Sharisha-4 and Rai-5, respectively. A dendrogram was constructed using unweighted pair group method of arithmetic mean (UPGMA). The result of cluster analysis indicated that the 9 accessions were capable of being classified into 2 major groups. One group consists of BARI Sharisha-12, Agrani, Sampad, Daulot, Rai-5, Alboglabra. where Daulot and Rai-5 showed the lowest genetic distance of 0.049. And another group contains BINA Sharisha-4, BINA Sharisha-5, and BARI Sharisha-1 3, where BINA Sharisha-5 and BARI sharisha-13 showed genetic distance of 0.071. Key Words: RAPD, Brassica, genetic distance, polymorphic band. DOI: 10.3329/bjar.v34i3.3976 Bangladesh J. Agril. Res. 34(3) : 493-5032, September 2009


2019 ◽  
Vol 6 (2) ◽  
pp. 215-225
Author(s):  
Nazmul Islam Mazumder ◽  
Tania Sultana ◽  
Prtitish Chandra Paul ◽  
Dinesh Chandra Roy ◽  
Deboprio Roy Sushmoy ◽  
...  

Twenty six rice lines of PBRC (salt tolerant line-20) × BRRI dhan-29 were used to evaluate salinity tolerance at the seedling stage and tested for salt tolerance using RAPD markers. Salinity screening was done using hydrophonic system at the greenhouse following IRRI standard protocol. Among the studied line, ten were moderately salinity tolerant, nine susceptible and rest of the lines highly susceptible. For assessing genetic diversity and relationship of F3 rice lines including two parents were tested against PCR-based Random Amplified Polymorphic DNA (RAPD) technique using three arbitrary decamer primers; OPA02, OPC01, and OPC12. Selected three primers generated a total of 14 bands. Out of 14 bands, 12 bands (86.67%) were polymorphic and 2 bands (13.33%) were monomorphic. The Unweighted Pair Group Method of Arithmetic Means (UPGMA) dendrogram constructed from Nei’s (1972) genetic distance produced 2 main clusters of the 28 rice genotypes. Most of the moderately tolerant lines and PBRC (STL-20) (tolerant variety) were grouped in same cluster due to lower genetic distance, while maximum susceptible along with BRRI dhan29 (susceptible variety) showed higher genetic distance with PBRC (STL-20) and moderately tolerant lines. This result indicates that the lines which formed grouped together, they are less diversed. On the other hand the lines remain in different clusters or different groups, are much diversed. Thus RAPD perform a potentially simple, rapid and reliable method to evaluate genetic diversity and molecular characterization as well. Res. Agric., Livest. Fish.6(2): 215-225, August 2019


2009 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
I Made Tasma ◽  
Ahmad Warsun

<p>Analisis Diversitas Genetik Genotipe Kedelai Toleran dan<br />Peka Keracunan Aluminium Menggunakan Marka Mikrosatelit.<br />I Made Tasma dan Ahmad Warsun. Persilangan<br />dua genotipe kedelai dengan jarak genetik jauh menghasilkan<br />progeni dengan polimorfisme tinggi pada banyak lokus<br />yang memfasilitasi keberhasilan program pemuliaan dan pemetaan<br />karakter agronomi penting kedelai. Tujuan penelitian<br />ini untuk mengetahui diversitas genetik genotipe kedelai<br />toleran dan peka keracunan aluminium (Al), informasi diversitas<br />alel dan tingkat polimorfisme marka SSR dari genotipe<br />kedelai yang diuji, menentukan genotipe dengan jarak genetik<br />jauh sebagai tetua dalam pembentukan populasi pemetaan<br />karakter toleran Al, dan informasi diversitas genetik dalam<br />pemilihan tetua untuk program pemuliaan kedelai toleran<br />keracunan Al. Dua puluh empat genotipe kedelai toleran<br />dan peka keracunan Al dianalisis menggunakan 15 marka<br />SSR. Marka SSR lokasinya menyebar pada 14 kromosom kedelai.<br />Dendrogram dikonstruksi menggunakan Unweighted<br />Pair-Group Method Arithmatic (UPGMA) melalui program<br />Numerical Taxonomy and Multivariate System (NTSYS) versi<br />2.1-pc. Diversitas genetik antara dua genotipe kedelai berkisar<br />antara 2-33,2%. Pada diversitas 33,2% uji klaster UPGMA<br />membagi genotipe menjadi 2 kelompok masing-masing terdiri<br />dari 19 dan 5 genotipe untuk kelompok 1 dan 2. Jumlah<br />alel SSR total 81dengan rata-rata jumlah alel per lokus SSR<br />4,4 dan rata-rata tingkat polimorfisme 0,55. Menggunakan diversitas<br />tertinggi 33,2% dua genotipe paling peka Al (B3293<br />dan B3442) dari kelompok 1 dan dua genotipe paling toleran<br />Al (B3462 dan B3851) dari kelompok 2 dipilih untuk membentuk<br />populasi pemetaan karakter toleran Al. Berdasarkan<br />nilai diversitas genetik tertinggi 33,2% banyak kemungkinan<br />kombinasi persilangan dapat dilakukan antara genotipe<br />toleran Al untuk pemuliaan kedelai toleran Al.</p>


2011 ◽  
Vol 7 (1) ◽  
pp. 47 ◽  
Author(s):  
Dani Satyawan ◽  
I Made Tasma

<p>Genetic Diversity Analysis of Jatropha Curcas<br />Provenances Using Randomly Amplified Polymorphic<br />DNA Markers. Dani Satyawan and I Made Tasma.<br />Jatropha curcas nuts are rich in oil that is higly suitable for<br />Hak Cipta © 2011, BB-Biogen<br />the production of bio-diesel or to be used directly in<br />modified diesel engines. The objective of this study was to<br />assess the extent of genetic diversity among 50 J. curcas<br />provenances and one accession of J. integerrima using<br />RAPD markers. The fifty J. curcas provenances were<br />collected from ecologically diverse regions of Indonesia, and<br />planted in the Pakuwon Experimental Station (Sukabumi,<br />West Java). Fourteen RAPD primers with 60-80% G+C<br />content were used in this genetic diversity analysis and<br />produced 64 bands with 95.7% polymorphism level. The<br />Polymerase Chain Reactions used to generate the RAPD<br />bands sometimes produced inconsistent and nonreproducible<br />results, necessitating the duplication of each<br />reaction to prevent scoring errors. Sixty one validated bands<br />were subsequently used for genetic diversity analysis using<br />Unweighted Pair Group Method Arithmetic (UPGMA)<br />method and Dice coefficients. It was shown that the<br />similarity coefficients among the provenances ranged from<br />0.2 to 0.98 with an average similarity of 0.75. Dendrogram<br />analysis produced two major groups of provenances, with<br />one outlier from South Lampung. There was no tendency for<br />provenances originated from nearby regions to cluster<br />together in each group, and several provenances showed<br />more similarities with provenances originated from distant<br />regions. This pattern lent credence to reports that Jatropha<br />was introduced to Indonesia around four centuries ago and<br />was mainly spread by humans. Based on the mean<br />similarities among the accessions and their clustering<br />pattern, the genetic diversity of the Jatropha collection<br />appeared to be fairly low. Future additions of genetic<br />materials from more diverse genetic background will be<br />necessary to maintain the current progress of Jatropha<br />improvement program.</p>


Genome ◽  
2005 ◽  
Vol 48 (4) ◽  
pp. 731-737 ◽  
Author(s):  
N A Barkley ◽  
M L Newman ◽  
M L Wang ◽  
M W Hotchkiss ◽  
G A Pederson

Polymorphic expressed sequence tag - simple sequence repeat (EST-SSR) markers derived from major cereal crops were used to assess the genetic diversity of the USDA temperate bamboo collection consisting of 92 accessions classified in 11 separate genera and 44 species. A total of 211 bands were detected with a mean number of alleles per locus of 8.440. Phylogenetic relationships were determined by calculating genetic distances between all pairwise combinations and assessing differences in character data. The resulting dendrograms (unweighted pair group method with arithmetic means (UPGMA) and parsimony) clustered the accessions into 2 main clades, which corresponded to accessions characterized morphologically as either clumping (sympodial) or running (monopodial) bamboos. The majority of the accessions clustered according to their current taxonomic classification. These markers were also beneficial in identifying contaminated and (or) misidentified plots. Overall, these transferred markers were informative in differentiating the various bamboo accessions and determining the level of genetic variation within and among species and genera.Key words: bamboo germplasm, genetic diversity, phylogeny.


2021 ◽  
Vol 13 (12) ◽  
pp. 6830
Author(s):  
Murat Guney ◽  
Salih Kafkas ◽  
Hakan Keles ◽  
Mozhgan Zarifikhosroshahi ◽  
Muhammet Ali Gundesli ◽  
...  

The food needs for increasing population, climatic changes, urbanization and industrialization, along with the destruction of forests, are the main challenges of modern life. Therefore, it is very important to evaluate plant genetic resources in order to cope with these problems. Therefore, in this study, a set of ninety-one walnut (Juglans regia L.) accessions from Central Anatolia region, composed of seventy-four accessions and eight commercial cultivars from Turkey, and nine international reference cultivars, was analyzed using 45 SSR (Simple Sequence Repeats) markers to reveal the genetic diversity. SSR analysis identified 390 alleles for 91 accessions. The number of alleles per locus ranged from 3 to 19 alleles with a mean value of 9 alleles per locus. Genetic dissimilarity coefficients ranged from 0.03 to 0.68. The highest number of alleles was obtained from CUJRA212 locus (Na = 19). The values of polymorphism information content (PIC) ranged from 0.42 (JRHR222528) to 0.86 (CUJRA212) with a mean PIC value of 0.68. Genetic distances were estimated according to the UPGMA (Unweighted Pair Group Method with Arithmetic Average), Principal Coordinates (PCoA), and the Structure-based clustering. The UPGMA and Structure clustering of the accessions depicted five major clusters supporting the PCoA results. The dendrogram revealed the similarities and dissimilarities among the accessions by identifying five major clusters. Based on this study, SSR analyses indicate that Yozgat province has an important genetic diversity pool and rich genetic variance of walnuts.


2011 ◽  
Vol 46 (9) ◽  
pp. 1035-1044 ◽  
Author(s):  
Patrícia Coelho de Souza Leão ◽  
Sérgio Yoshimitsu Motoike

The objective of this work was to analyze the genetic diversity of 47 table grape accessions, from the grapevine germplasm bank of Embrapa Semiárido, using 20 RAPD and seven microsatellite markers. Genetic distances between pairs of accessions were obtained based on Jaccard's similarity index for RAPD data and on the arithmetic complement of the weighted index for microsatellite data. The groups were formed according to the Tocher's cluster analysis and to the unweighted pair‑group method with arithmetic mean (UPGMA). The microsatellite markers were more efficient than the RAPD ones in the identification of genetic relationships. Information on the genetic distance, based on molecular characteristics and coupled with the cultivar agronomic performance, allowed for the recommendation of parents for crossings, in order to obtain superior hybrids in segregating populations for the table grape breeding program of Embrapa Semiárido.


Genome ◽  
2003 ◽  
Vol 46 (1) ◽  
pp. 51-58 ◽  
Author(s):  
A Segovia-Lerma ◽  
R G Cantrell ◽  
J M Conway ◽  
I M Ray

Improving commercial utilization of perennial Medicago collections requires developing approaches that can rapidly and accurately characterize genetic diversity among large numbers of populations. This study evaluated the potential of using amplified fragment length polymorphism (AFLP) DNA markers, in combination with DNA bulking over multiple genotypes, as a strategy for high-throughput characterization of genetic distances (D) among alfalfa (Medicago sativa L.) accessions. Bulked DNA templates from 30 genotypes within each of nine well-recognized germplasms (African, Chilean, Flemish, Indian, Ladak, Medicago sativa subsp. falcata, Medicago sativa subsp. varia, Peruvian, and Turkistan) were evaluated using 34 primer combinations. A total of 3754 fragments were identified, of which 1541 were polymorphic. The number of polymorphic fragments detected per primer combination ranged from 20 to 85. Pairwise D estimates among the nine germplasms ranged from 0.52 to 1.46 with M. sativa subsp. falcata being the most genetically dissimilar. Unweighted pair-group method arithmetic average (UPGMA) analysis of the marker data produced two main clusters, (i) M. sativa subsp. sativa and M. sativa subsp. varia, and (ii) M. sativa subsp. falcata. Cluster-analysis results and D estimates among the Chilean, Peruvian, Flemish, and M. sativa subsp. varia germplasms supported the hypothesis that Peruvian was more similar to original Spanish introductions into Central and South America than Chilean. Hierarchical arrangement of the nine germplasms was supported by their respective geographic, subspecific, and intersubspecific hybrid origins. Subsets of as few as seven highly informative primer pairs were identified that produced comparable D estimates and similar heirarchical arrangements compared with the complete dataset. The results indicate that use of primer-pair subsets for AFLP analysis of bulk DNA templates could serve as a high-throughput system for accurately characterizing genetic diversity among large numbers of alfalfa populations.Key words: Medicago sativa, DNA bulking, genetic distance.


2012 ◽  
Vol 22 (1) ◽  
pp. 51-58 ◽  
Author(s):  
M.E. Hoque ◽  
M.M. Hasan

Random Amplified Polymorphic DNA (RAPD) markers were used to study the molecular genetic diversity analysis among six BARI released lentil varieties viz. BARI masur-1, BARI masur-2, BARI masur-3, BARI masur-4, BARI masur-5 and BARI masur-6. PCR amplified products were visualized on 1.0% agarose gel and the band for each primer were scored. Ten RAPD markers were used in this study. Out of them 7 primers showed amplification of 53 DNA fragments with 60.37% of them being polymorphic. The highest number of polymorphic loci was noticed in the variety BARI masur-3. The same variety also showed maximum Nei’s gene diversity value (0.0552). The highest Nei’s genetic distance (0.5002) was observed in BARI masur-1 vs. BARI masur-5 whereas, the lowest genetic distance (0.0692) was found in BARI masur-1 vs. BARI masur-2. The unweighted pair group method of arithmetic mean (UPGMA) dendrogram based on Nei’s genetic distance grouped the six cultivars into two main clusters. BARI masur-1, BARI masur-2 and BARI masur-3 were in cluster I and BARI masur-4, BARI masur-5 and BARI masur-6 were in cluster II. The cultivar BARI masur-4 was closest to the cultivar BARI masur-6 with the lowest genetic distance (0.0972) and the highest genetic distance (0.5002) was found between BARI masur-1 and BARI masur-5. The RAPD markers were found to be useful in molecular characterization of lentil varieties which could be utilized by the breeders for the improvement of lentil cultivars. DOI: http://dx.doi.org/10.3329/ptcb.v22i1.11260 Plant Tissue Cult. & Biotech. 22(1): 51-58, 2012 (June)


1996 ◽  
Vol 26 (8) ◽  
pp. 1454-1462 ◽  
Author(s):  
Naoki Tani ◽  
Nobuhiro Tomaru ◽  
Masayuki Araki ◽  
Kihachiro Ohba

Japanese stone pine (Pinuspumila Regel) is a dominant species characteristic of alpine zones of high mountains. Eighteen natural populations of P. pumila were studied in an effort to determine the extent and distribution of genetic diversity. The extent of genetic diversity within this species was high (HT = 0.271), and the genetic differentiation among populations was also high (GST = 0.170) compared with those of other conifers. In previous studies of P. pumila in Russia, the genetic variation within the species was also high, but the genetic differentiation among populations was low. We infer that this difference originates from differences in geographic distribution and ecological differences between the two countries. The genetic variation within each population tended, as a whole, to be smaller within marginal southern populations than within northern populations. Genetic relationships among populations reflect the geographic locations, as shown by unweighted pair-group method with arithmetic means and neighbor-joining phylogenetic trees.


Sign in / Sign up

Export Citation Format

Share Document