scholarly journals Diagnostic Microbiology: Present Status and Future Prospect

2017 ◽  
Vol 2 (2) ◽  
pp. 42-47
Author(s):  
Shahanara Begum ◽  
Md. Abdullah Yusuf ◽  
Bhuiyan Mohammad Mahtab Uddin

Diagnostic Microbiology is the tool that makes it possible to identify the exact pathogens of infectious diseases and the most optimal therapy at the level of individual patients. Conventional methods require time to grow the microbes in vitro under specific conditions and not all microbes can easily be cultured. This is followed by biochemical methods for identification which further makes the process lengthy. Transport of the specimens under less than ideal conditions, prior use of antibiotics and small number of organisms are among the factors that render culture-based methods less reliable. Newer methods depend on amplification of nucleic acids followed by use of probes for identification. This mitigates the need for higher microbial load, presence of metabolically active viable organisms and shortens the time. These methods can be used to detect antibiotic resistance genes directly from the specimen and help direct targeted therapy with efficacy. Since these methods will not fulfill all the diagnostic needs, a second approach is being used to shorten the time to identification after the organism has already grown. Mass spectrometry and bioinformatics are the tools making this possible. This review gives a historical perspective on diagnostic microbiology, discusses the pitfalls of current methodology and provides an overview of newer and future methods.Bangladesh Journal of Infectious Disease 2015;2(2):42-47

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
David L Paterson ◽  
Burcu Isler ◽  
Patrick N A Harris

Abstract Ceftriaxone resistance in the Enterobacterales is typically the result of production of ESBLs or AmpC β-lactamases. The genes encoding these enzymes are often co-located with other antibiotic resistance genes leading to resistance to aminoglycosides, quinolones and trimethoprim/sulfamethoxazole. Carbapenems are stable to ESBLs and AmpC giving them reliable in vitro activity against producers of these β-lactamases. In contrast, piperacillin/tazobactam and amoxicillin/clavulanate are compromised by co-production of OXA-1, which is not inhibited by tazobactam or clavulanate. These in vitro findings provide an explanation for the MERINO trial outcomes, where 3.7% (7/191) randomized to meropenem died compared with 12.3% (23/187) randomized to piperacillin/tazobactam as definitive treatment of bloodstream infection due to ceftriaxone-resistant organisms. No randomized trials have yet put cefepime and carbapenems head to head, but some observational studies have shown worse outcomes with cefepime. We argue that carbapenems are the antibiotics of choice for ceftriaxone-resistant Enterobacterales.


2008 ◽  
Vol 74 (19) ◽  
pp. 6032-6040 ◽  
Author(s):  
Anna Rosander ◽  
Eamonn Connolly ◽  
Stefan Roos

ABSTRACT The spread of antibiotic resistance in pathogens is primarily a consequence of the indiscriminate use of antibiotics, but there is concern that food-borne lactic acid bacteria may act as reservoirs of antibiotic resistance genes when distributed in large doses to the gastrointestinal tract. Lactobacillus reuteri ATCC 55730 is a commercially available probiotic strain which has been found to harbor potentially transferable resistance genes. The aims of this study were to define the location and nature of β-lactam, tetracycline, and lincosamide resistance determinants and, if they were found to be acquired, attempt to remove them from the strain by methods that do not genetically modify the organism before subsequently testing whether the probiotic characteristics were retained. No known β-lactam resistance genes was found, but penicillin-binding proteins from ATCC 55730, two additional resistant strains, and three sensitive strains of L. reuteri were sequenced and comparatively analyzed. The β-lactam resistance in ATCC 55730 is probably caused by a number of alterations in the corresponding genes and can be regarded as not transferable. The strain was found to harbor two plasmids carrying tet(W) tetracycline and lnu(A) lincosamide resistance genes, respectively. A new daughter strain, L. reuteri DSM 17938, was derived from ATCC 55730 by removal of the two plasmids, and it was shown to have lost the resistances associated with them. Direct comparison of the parent and daughter strains for a series of in vitro properties and in a human clinical trial confirmed the retained probiotic properties of the daughter strain.


Science ◽  
2019 ◽  
Vol 363 (6423) ◽  
pp. 181-187 ◽  
Author(s):  
Xiaofang Jiang ◽  
A. Brantley Hall ◽  
Timothy D. Arthur ◽  
Damian R. Plichta ◽  
Christian T. Covington ◽  
...  

Phase variation, the reversible alternation between genetic states, enables infection by pathogens and colonization by commensals. However, the diversity of phase variation remains underexplored. We developed the PhaseFinder algorithm to quantify DNA inversion–mediated phase variation. A systematic search of 54,875 bacterial genomes identified 4686 intergenic invertible DNA regions (invertons), revealing an enrichment in host-associated bacteria. Invertons containing promoters often regulate extracellular products, underscoring the importance of surface diversity for gut colonization. We found invertons containing promoters regulating antibiotic resistance genes that shift to the ON orientation after antibiotic treatment in human metagenomic data and in vitro, thereby mitigating the cost of antibiotic resistance. We observed that the orientations of some invertons diverge after fecal microbiota transplant, potentially as a result of individual-specific selective forces.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yasmin Neves Vieira Sabino ◽  
Mateus Ferreira Santana ◽  
Linda Boniface Oyama ◽  
Fernanda Godoy Santos ◽  
Ana Júlia Silva Moreira ◽  
...  

AbstractInfections caused by multidrug resistant bacteria represent a therapeutic challenge both in clinical settings and in livestock production, but the prevalence of antibiotic resistance genes among the species of bacteria that colonize the gastrointestinal tract of ruminants is not well characterized. Here, we investigate the resistome of 435 ruminal microbial genomes in silico and confirm representative phenotypes in vitro. We find a high abundance of genes encoding tetracycline resistance and evidence that the tet(W) gene is under positive selective pressure. Our findings reveal that tet(W) is located in a novel integrative and conjugative element in several ruminal bacterial genomes. Analyses of rumen microbial metatranscriptomes confirm the expression of the most abundant antibiotic resistance genes. Our data provide insight into antibiotic resistange gene profiles of the main species of ruminal bacteria and reveal the potential role of mobile genetic elements in shaping the resistome of the rumen microbiome, with implications for human and animal health.


2009 ◽  
Vol 75 (19) ◽  
pp. 6352-6360 ◽  
Author(s):  
Joanna Boguslawska ◽  
Joanna Zycka-Krzesinska ◽  
Andrea Wilcks ◽  
Jacek Bardowski

ABSTRACT Tetracycline-resistant Lactococcus lactis strains originally isolated from Polish raw milk were analyzed for the ability to transfer their antibiotic resistance genes in vitro, using filter mating experiments, and in vivo, using germfree rats. Four of six analyzed L. lactis isolates were able to transfer tetracycline resistance determinants in vitro to L. lactis Bu2-60, at frequencies ranging from 10−5 to 10−7 transconjugants per recipient. Three of these four strains could also transfer resistance in vitro to Enterococcus faecalis JH2-2, whereas no transfer to Bacillus subtilis YBE01, Pseudomonas putida KT2442, Agrobacterium tumefaciens UBAPF2, or Escherichia coli JE2571 was observed. Rats were initially inoculated with the recipient E. faecalis strain JH2-2, and after a week, the L. lactis IBB477 and IBB487 donor strains were introduced. The first transconjugants were detected in fecal samples 3 days after introduction of the donors. A subtherapeutic concentration of tetracycline did not have any significant effect on the number of transconjugants, but transconjugants were observed earlier in animals dosed with this antibiotic. Molecular analysis of in vivo transconjugants containing the tet(M) gene showed that this gene was identical to tet(M) localized on the conjugative transposon Tn916. Primer-specific PCR confirmed that the Tn916 transposon was complete in all analyzed transconjugants and donors. This is the first study showing in vivo transfer of a Tn916-like antibiotic resistance transposon from L. lactis to E. faecalis. These data suggest that in certain cases food lactococci might be involved in the spread of antibiotic resistance genes to other lactic acid bacteria.


2019 ◽  
Author(s):  
Marinelle Rodrigues ◽  
Sara W. McBride ◽  
Karthik Hullahalli ◽  
Kelli L. Palmer ◽  
Breck A. Duerkop

AbstractThe innovation of new therapies to combat multidrug-resistant (MDR) bacteria is being outpaced by the continued rise of MDR bacterial infections. Of particular concern are hospital-acquired infections (HAIs) recalcitrant to antibiotic therapies. The Gram-positive intestinal pathobiontEnterococcus faecalisis associated with HAIs and some strains are MDR. Therefore, novel strategies to controlE. faecalispopulations are needed. We previously characterized anE. faecalisType II CRISPR-Cas system and demonstrated its utility in the sequence-specific removal of antibiotic resistance determinants. Here we present work describing the adaption of this CRISPR-Cas system into a constitutively expressed module encoded on a pheromone-responsive conjugative plasmid that efficiently transfers toE. faecalisfor the selective removal of antibiotic resistance genes. Usingin vitrocompetition assays, we show that these CRISPR-Cas-encoding delivery plasmids, or CRISPR-Cas antimicrobials, can reduce the occurrence of antibiotic resistance in enterococcal populations in a sequence-specific manner. Furthermore, we demonstrate that deployment of CRISPR-Cas antimicrobials in the murine intestine reduces the occurrence of antibiotic-resistantE. faecalisby several orders of magnitude. Finally, we show thatE. faecalisdonor strains harboring CRISPR-Cas antimicrobials are immune to uptake of antibiotic resistance determinantsin vivo. Our results demonstrate that conjugative delivery of CRISPR-Cas antimicrobials may be adaptable for future deployment from probiotic bacteria for exact targeting of defined MDR bacteria or for precision engineering of polymicrobial communities in the mammalian intestine.ImportanceCRISPR-Cas nucleic acid targeting systems hold promise for the amelioration of multidrug-resistant enterococci, yet the utility of such tools in the context of the intestinal environment where enterococci reside is understudied. We describe the development of a CRISPR-Cas antimicrobial, deployed on a conjugative plasmid, for the targeted removal of antibiotic resistance genes from intestinalEnterococcus faecalis. We demonstrate that CRISPR-Cas targeting reduces antibiotic resistance ofE. faecalisby several orders of magnitude in the intestine. Although barriers exist that influence the penetrance of the conjugative CRISPR-Cas antimicrobial among target recipientE. faecaliscells, the removal of antibiotic resistance genes inE. faecalisupon uptake of the CRISPR-Cas antimicrobial is absolute. In addition, cells that obtain the CRISPR-Cas antimicrobial are immunized against the acquisition of new antibiotic resistance genes. This study suggests a potential path toward plasmid based CRISPR-Cas therapies in the intestine.


2018 ◽  
Author(s):  
Valerie J. Price ◽  
Sara W. McBride ◽  
Karthik Hullahalli ◽  
Anushila Chatterjee ◽  
Breck A. Duerkop ◽  
...  

AbstractCRISPR-Cas systems are barriers to horizontal gene transfer (HGT) in bacteria. Little is known about CRISPR-Cas interactions with conjugative plasmids, and studies investigating CRISPR-Cas/plasmid interactions inin vivomodels relevant to infectious disease are lacking. These are significant gaps in knowledge because conjugative plasmids disseminate antibiotic resistance genes among pathogensin vivo, and it is essential to identify strategies to reduce the spread of these elements. We use enterococci as models to understand the interactions of CRISPR-Cas with conjugative plasmids.Enterococcus faecalisis a native colonizer of the mammalian intestine and harbors pheromone-responsive plasmids (PRPs). PRPs mediate inter- and intraspecies transfer of antibiotic resistance genes. We assessedE. faecalisCRISPR-Cas anti-PRP activity in the mouse intestine and under varyingin vitroconditions. We observed striking differences in CRISPR-Cas efficiencyin vitroversusin vivo. With few exceptions, CRISPR-Cas blocked intestinal PRP dissemination, whilein vitro, the PRP frequently escaped CRISPR-Cas defense. Our results further the understanding of CRISPR-Cas biology by demonstrating that standardin vitroexperiments do not adequately model thein vivoanti-plasmid activity of CRISPR-Cas. Additionally, our work identifies several variables that impact the apparentin vitroanti-plasmid activity of CRISPR-Cas, including planktonic versus biofilm settings, different donor/recipient ratios, production of a plasmid-encoded bacteriocin, and the time point at which matings are sampled. Our results are clinically significant because they demonstrate that barriers to HGT encoded by normal human microbiota can have significant impacts onin vivoantibiotic resistance dissemination.ImportanceCRISPR-Cas is a type of immune system encoded by bacteria that is hypothesized to be a natural impediment to the spread of antibiotic resistance genes. In this study, we directly assessed the impact of CRISPR-Cas on antibiotic resistance dissemination in the mammalian intestine and under varyingin vitroconditions. We observed a robust effect of CRISPR-Cas onin vivobut notin vitrodissemination of antibiotic resistance plasmids in the native mammalian intestinal colonizerEnterococcus faecalis. We conclude that standard laboratory experiments currently do not appropriately model thein vivoconditions where antibiotic resistance dissemination occurs betweenE. faecalisstrains. Moreover, our results demonstrate that CRISPR-Cas encoded by native members of the mammalian intestinal microbiota can block the spread of antibiotic resistance plasmids.


2021 ◽  
Vol 156 (Supplement_1) ◽  
pp. S128-S128
Author(s):  
E Coate ◽  
T Merchen ◽  
R Cybulski ◽  
R Collier ◽  
P Mc Gann ◽  
...  

Abstract Introduction/Objective This case study describes the diagnosis, treatment, whole genome sequencing (WGS) and antibiotic resistance characterization from the ESBL-producing Pluralibacter gergoviae, a multi-drug resistant organism (MDRO) with a previously-documented presence in foodstuffs and cosmetics. Methods/Case Report A 39-year-old Hispanic American woman was admitted to the emergency department (ED) for fever, suprapubic tenderness, and pyuria. Three days prior to admission, patient underwent elective bilateral lithotripsy for retained nephrolithiasis. Seven days prior to ED admission, patient had an “Orgasm Shot” (O-Shot) which consists of platelet rich plasma that is drawn from the patient and injected into her vulvar area and around her clitoris to increase stimulation potential during orgasm. The patient was started on broad spectrum antibiotics, receiving Vancomycin and Ceftriaxone 1 gram 1 gram IV every 12 hours, intravenously. Urine cultures yielded two organisms, including a lactose fermenting as well as a non-lactose fermenting Gram negative rod. Mass spectrometry-based identification was successful in identifying the non-lactose fermenting colony as Pseudomonas aeruginosa, which also identified from a blood culture collected from the patient upon presentation to the ED. The lactose fermenting colony resulted in no identification by mass spectrometry but was identified using biochemical methods as Pluralibacter gergoviae, a recently-reclassified taxonomy previously identified as Enterobacter gergoviae. The P. gergoviae isolate was submitted to the Multidrug-Resistant Organism Repository (MRSN) at Walter Reed Army Institute of Research (WARIR) for WGS on Illumina Miseq. Sequencing and phenotypic/ genotypic data on isolate confirmed this as an ESBL P. gergoviae organism. Results (if a Case Study enter NA) NA Conclusion Summary data on possible epidemiological associations, antibiotic susceptibility testing, antibiotic resistance genes identified, and information on the antibiotic resistance plasmids will be presented. These findings from the WGS data, antibiotic susceptibilities will provide a lessons-learned for other clinical microbiology labs on how to identify unusual organisms such as P. gergoviae.


2019 ◽  
Vol 37 (No. 1) ◽  
pp. 36-43
Author(s):  
Huiling Guo ◽  
Bilige Menghe

The antimicrobial susceptibility of 20 Lb. bulgaricus isolates from traditional fermented milk-originated was assessed and then determined the ability to transfer antibiotic resistance genes to other bacteria. The minimum inhibitory concentration of each strain was determined using a standardized dilution method. All the tested strains were found to be susceptible to gentamicin, erythromycin, clindamycin, neomycin, tetracycline, linezolid, chloramphenicol, rifampicin, and quinupristin/dalfopristin, while their susceptibilities to kanamycin, ciprofloxacin, streptomycin, trimethoprim, ampicillin, and vancomycin varied. Polymerase chain reaction (PCR) was used to check whether specific antibiotic resistance genes were present in these Lb. bulgaricus. We detected the rpoB, erm(B), aadA, bla, cat and vanX. Finally, a filter mating assay was applied to investigate the transferability of these resistance markers; and we observe no antibiotic resistance transfer between bacteria. This work demonstrates a low risk of lateral transfer of the antibiotic resistance gene of Lb. bulgaricus.


Sign in / Sign up

Export Citation Format

Share Document