scholarly journals Performance of Prilled Urea and Urea Super Granule by Applicators on Yield and Nitrogen Use Efficiency in Boro Rice

2019 ◽  
Vol 22 (2) ◽  
pp. 63-69
Author(s):  
ATMS Hossain ◽  
F Rahman ◽  
PK Saha

A field experiment was conducted on validation of prilled urea (PU) and urea super granule (USG) applied by applicators on yield and nitrogen use efficiency during Boro 2014 season at Bangladesh Rice Research Institute (BRRI) farm, Gazipur (AEZ 28). Six treatment combinations of different N doses and methods of N application were tested to compare urea-N application by PU and USG applicator for rice yield, N uptake and N use efficiency over urea broadcasting. Application of N as PU or USG through applicator has same effect on grain yield, N uptake and N use efficiency compared with urea broadcasting. Statistically similar grain yield were observed with N application as PU or USG @ 78 kg N ha-1 by applicator which was comparable with urea broadcasting @ 135 kg N ha-1. The N concentration and uptake in both panicle initiation (PI) and maturity stage were higher in USG deep placement than PU deep placement by applicators but the difference was not significant. Although agronomic use efficiency (AUE) of N was slightly higher in PU than USG applied by applicators but the recovery efficiency (RE) of N was higher in USG than PU. Bangladesh Rice j. 2018, 22(2): 63-69

2019 ◽  
Vol 6 (1) ◽  
pp. 27-33
Author(s):  
Md Rafiqul Islam ◽  
Snigdha Khatun ◽  
Azmul Huda ◽  
M Mazibur Rahman ◽  
Mahbubul Alam Asad

An experiment was conducted at the Soil Science Field Laboratory of Bangladesh Agricultural University, Mymensingh during Aman season of 2016 to evaluate the effects of deep placement of N fertilizers in the form of urea super granule (USG) and NPK briquettes in comparison with prilled urea (PU) on nitrogen use efficiency and yield of BRRI dhan49. The soil was silt loam in texture having pH 6.27, organic matter content 1.95% and total N 0.136%. The experiment was laid out in a Randomized Complete Block Design (RCBD) with eight treatments and three replications. The treatments include T1 (Control), T2 (PU, 104 kg N ha-1), T3 (USG, 104 kg N ha- 1), T4 (USG 78 kg N ha-1), T5 (USG, 52 kg N ha-1), T6 (NPK briquettes, 104 kg N ha-1), T7 (NPK briquettes, 78 kg N ha-1) and T8 (NPK briquettes, 52 kg N ha-1). All the treatments except T6, T7 and T8 received 16 kg P and 42 kg K ha-1 from TSP and MoP, respectively. In T6, T7 and T8 treatments, P and K were supplied from NPK briquettes. The PU was applied in three equal splits. The USG and NPK briquettes were deep placed 10 DAT and the briquettes were placed at 8-10 cm depth between four hills at alternate rows. Application of PU, USG and NPK briquette under alternate wetting and drying (AWD) condition exerted significant influence on yield attributes as well as grain and straw yields of BRRI dhan49. The maximum grain yield of 6311 kg ha-1 (100% increases over control) and straw yield of 6956 kg ha-1 was recorded in T3 (USG, 104 kg N ha-1). The second highest grain yield of 5865 kg ha-1 produced by T2 (PU, 104 kg N ha-1) was statistically similar with T4 (USG 78 kg N ha-1) and T6 (NPK briquettes, 104 kg N ha-1). The lowest grain yield (3155 kg ha-1) and straw yield (3908 kg ha-1) were recorded in T1 (Control). The deep placement of USG and NPK briquettes enhanced both the recovery of applied N and N use efficiency in comparison with broadcast application of prilled urea. The T5 (USG, 52 kg N ha-1) showed maximum apparent N recovery, and N use efficiency. Next to T5, the T4 depicted the position in respect of N recovery and N use efficiency. So the application of 78 kg N ha-1 in the form of USG can be recommended for the production of BRRI dhan49. Res. Agric., Livest. Fish.6(1): 27-33, April 2019


2019 ◽  
Vol 17 (1) ◽  
pp. 93-103 ◽  
Author(s):  
RS Rea ◽  
MR Islam ◽  
MM Rahman ◽  
K Mix

Continuous increase of nitrogen fertilizer use adversely affecting the soil health as well as the environment. It necessitates the systematic study of the impact of nitrogen (N) fertilizer use-reduction on crop yield. In this article, the effects of deep placement of nitrogen fertilizers on nitrogen use efficiency (NUE) and yield of rice variety “BRRI dhan46” were investigated and compared for three N formulations: urea super granule (USG), NPK briquettes and prilled urea (PU). The experiment was conducted in randomized complete block design (RCBD) with eight N treatments replicated three times. The treatments were applied by varying doses (0, 52, 78 and 104 kg ha-1) of nitrogen fertilizers in a known identical soil and weather condition. Applications of PU, USG and NPK briquettes exhibited significant differences on yield attributes of rice. Results revealed maximum grain yield of 6.391 t ha-1 (54% increases over control) for the dose USG 104 kg ha-1 which is statistically similar to the dose USG 78 kg ha-1 and NPK briquettes 104 kg ha-1. The deep placement of USG and NPK briquettes enhanced both the recovery of applied N and N use efficiency compared to broadcast application of prilled urea. However, USG 78 kg ha-1 showed maximum apparent N recovery, N use efficiency, gross margin and marginal benefit-cost ratio. Thus, an application of 78 kg ha-1 USG can be recommended for profitable cultivation of rice variety BRRI dhan46. SAARC J. Agri., 17(1): 93-103 (2019)


Author(s):  
S. B. Z. Sharna ◽  
S. Islam ◽  
A. Huda ◽  
M. Jahiruddin ◽  
M. R. Islam

Nitrogen is one of the most deficient plant nutrients in Bangladesh soils. The use nitrogenous fertilizer especially urea is a commonly used fertilizer for rice production but its efficiency very low about 30-40% under traditional broadcast method A field experiment was carried out  in the Soil Science Field Laboratory of Bangladesh Agricultural University, Mymensingh during Aus rice growing season of 2014 to investigate the effects of prilled urea, urea briquettes and NPK briquettes on the growth, yield, and nitrogen use efficiency of BRRI dhan48. There were six treatments as T1 [check (N0P16K42], T2 [Urea briquette (one-3.4 g) (N52P16K42)], T3 (Urea briquette (one-2.7 g (N78P16K42)], T4 [NPK briquette (one-3.4g)(N51P13K32], T5 [Prilled urea (N78P16K42)] and T6 [NPK briquettes(two-2.4 g briquettes (N78P15K42)]. The experiment was laid out in a Randomized Complete Block Design (RCBD) with six treatments and four replications. Prilled urea was applied in two equal splits application; at 8 days after transplanting (DAT) and the second dose after 38 DAT, while for urea briquettes and NPK briquettes were deep placed (8-10 cm depth) at 8 DAT between four hills at alternate rows. Water samples were collected for every 7 consecutive days and analyzed for NH4-N. The results showed that the NH4-N concentration in floodwater reached to maximum on day 2 in PU treated plots and then decreased  with time, while the urea briquettes and NPK briquettes treated plots slowly produced NH4-N over the growth period. The highest grain yield of 4.75 t ha-1 (69% over control) was obtained in the treatment T3 [Urea briquette (one-2.7g) (N78P16K42)]. The treatment T3 also produced the highest straw yield of 5.49 t ha-1. The maximum apparent N recovery and the maximum N use efficiency were found in the treatment T4 [NPK briquette (one-3.4g) (N51P13K32)]. It appeared that the deep placement of urea briquettes and NPK briquettes reduced N-losses and enhanced the recovery of applied N as well as N use efficiency in comparison with PU application.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Ming Du ◽  
Wenzhong Zhang ◽  
Jiping Gao ◽  
Meiqiu Liu ◽  
Yan Zhou ◽  
...  

Although nitrogen (N), phosphorus (P), and potassium (K) co-application improves crop growth, yield, and N use efficiency (NUE) of rice, few studies have investigated the mechanisms underlying these interactions. To investigate root morphological and physiological characteristics and determine yield and nitrogen use parameters, rhizo-box experiments were performed on rice using six treatments (no fertilizer, PK, N, NK, NP, and NPK) and plants were harvested at maturity. The aboveground biomass at the elongating stage and grain yield at maturity for NPK treatment were higher than the sum of PK and N treatments. N, P, and K interactions enhanced grain yield due to an increase in agronomic N use efficiency (NAE). The co-application of N, P, and K improved N uptake and N recovery efficiency, exceeding the decreases in physiological and internal NUE and thereby improving NAE. Increases in root length and biomass, N uptake per unit root length/root biomass, root oxidation activity, total roots absorption area, and roots active absorption area at the elongating stage improved N uptake via N, P, and K interactions. The higher total N uptake from N, P, and K interactions was due to improved root characteristics, which enhanced the rice yield and NUE.


1998 ◽  
Vol 78 (4) ◽  
pp. 611-613 ◽  
Author(s):  
R. Michaud ◽  
G. Bélanger ◽  
A. Brégard ◽  
J. Surprenant

Improvement of N use efficiency of timothy (Phleum pratense L.) involves higher DM yield but, for feeding purposes, N concentration should also be considered. Differences in N use efficiency were found among 40 genotypes of timothy. The analysis of residues of the linear regression between N uptake and DM yield of all genotypes allowed for the selection of genotypes with both high N use efficiency and contrasted N concentrations. Key words: Phleum pratense L., timothy, genetic selection, nitrogen use efficiency


2018 ◽  
Vol 3 (4) ◽  
pp. 454-461
Author(s):  
Md Rafiqul Islam ◽  
Mahthir Been Mohammad ◽  
Mst Tazmin Akhter ◽  
Md Moyeed Hasan Talukder ◽  
Kawsar Hossen

An experiment was conducted at the Soil Science Field Laboratory of Bangladesh Agricultural University, Mymensingh during boro season of 2016 to evaluate the effect of deep placement of nitrogen (N) fertilizers on N use efficiency and yield of BRRI dhan29 under continuous flooded condition. The soil was silt loam in texture having pH 6.27, organic matter content 1.95%, total N 0.136%, available P 3.16 ppm, exchangeable K 0.095 me%, available S 10.5 ppm and EC 348 μS cm-1. The experiment was laid out in a Randomized Complete Block Design (RCBD) with eight treatments and three replications. The treatments were T1 [Control], T2 [Prilled Urea, 130 kg N ha-1] , T3 [USG, 130 kg N ha-1], T4 [USG, 104 kg N ha-1], T5 [USG, 78 kg N ha-1], T6 [NPK briquette , 129 kg N ha-1], T7 [NPK briquette, 102 kg N ha-1] and T8 [NPK briquette, 78 kg N ha-1]. All the treatments except T6, T7 and T8 received 25 kg P and 64 kg K ha-1 as TSP and MoP, respectively. In T6, T7 and T8 treatments, P and K were supplied from NPK briquettes. Prilled urea was applied in three equal splits. USG and NPK briquettes were applied at 10 DAT and were placed at 8-10 cm depth between four hills at every alternate row. The results demonstrate that all the yield components except 1000-grain weight and yields of BRRI dhan29 responded significantly to the deep placement of N in the form of USG and NPK briquettes under continuous flooded condition. The highest grain yield of 6561 kg ha-1 was recorded in T3 [USG, 130 kg N ha-1] which was statistically similar to that ofT4 [USG, 104 kg N ha-1].The highest straw yield of 6876 kg ha-1 was obtained in T3 [USG, 130 kg N ha-1]. The lowest grain yield (3094 kg ha-1) and straw yield (3364 kg ha-1) were found for T1 (Control). The deep placement of USG and NPK briquettes enhanced the recovery of applied N and N use efficiency in comparison with the broadcast application of PU. The highest value of NUE (32.05 kg grain increase per kg N applied) was obtained in T5 [USG, 78 kg N ha-1] followed by T4 [30.75 kg grain increase per kg N applied) and the lowest value was found in T8 [130 kg N ha-1 from PU]. Based on yield, N use efficiency and cost-benefit analysis, an application of 104 kg N ha-1 as USG can be recommended as the best treatment for achieving satisfactory yield of boro rice (cv. BRRI dhan29) at BAU farm and at adjacent areas under AEZ 9 (Old Brahmaputra Floodplain).Asian J. Med. Biol. Res. December 2017, 3(4): 454-461


2016 ◽  
Vol 19 (1) ◽  
pp. 1-10
Author(s):  
MKA Bhuiyan ◽  
L Nahar ◽  
MM Mahbub ◽  
R Shultana ◽  
MAJ Mridha ◽  
...  

An experiment was conducted at the Bangladesh Rice Research Institute (BRRI), Gazipur during Boro season of 2013-14 and 2014-15 to find out the nitrogen use efficiency and yield of boro rice var. BRRI dhan28 and BRRI dhan29 under four N management practices such as application of prilled urea using prilled urea applicator, application of USG (2.7gm) using USG applicator, broadcasting of prilled urea following three splits and a control (without urea). The experimental design was RCBD replicated thrice. BRRI dhan29 with urea broadcasted plots produced higher grain yield (7.38t ha-1) followed by BRRI dhan29 with USG application (6.65 t ha-1). Hand broadcasting with urea fertilizer showed 15.38.5and 2.5, 9.89% higher grain yield than machine application of prilled urea and USG in BRRI dhan28 and BRRI dhan29, respectively. Grain yield showed a significant quadratic response to N fertilization and significant linear response with total dry matter production in both the varieties. Higher total N was uptake from urea broadcasted plots in BRRI dhan29 followed by urea broadcasted from BRRI dhan28. BRRI dhan29 with Prilled urea applicator and BRRI dhan29 with USG treatment uptake intermediate nitrogen. N uptake in grain and total N uptake had a significant linear and quadratic response to N treatment in BRRI dhan28 and BRRI dhan29. Nitrogen use efficiency was higher in BRRI dhan29 compared to BRRI dhan28. Economic analysis showed that rice var. BRRI dhan28 and BRRI dhan29 with urea broadcast had the highest gross return of Tk.145145.00 and Tk. 158310.00 ha-1, respectively. However, the maximum cost (Tk. 151131) was involved for BRRI dhan29 with urea broadcasting, while the minimum with no urea fertilizer application for both the varieties. The highest marginal rate of return (MRR) (Tk.1146) was recorded from BRRI dhan28 with USG application using BRRI applicator.Bangladesh Agron. J. 2016, 19(1): 1-10


2020 ◽  
Vol 15 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Abdur Rehim ◽  
Maryam Khan ◽  
Muhammad Imran ◽  
Muhammad Amjad Bashir ◽  
Sami Ul-Allah ◽  
...  

Lower nitrogen use efficiency (NUE) is a major yield limiting factor in semi-arid regions due to poor organic contents of the soils. There is a close relationship between soil organic matter and NUE of fertilizers. Therefore, this study was conducted to assess the effect of sole N fertilizer and its combinations with organic amendments (farm manure combinations) on N use efficiency and crop productivity. For this purpose, a two-year field study was conducted to access the influence of integrated use of synthetic N fertilizer (urea) and farm manure on N use efficiency and wheat productivity. Treatments include i.e. Control, 100% N by Urea + 0%N by farm manure (FM), 75% N by Urea + 25 % N by FM, 50% N by Urea + 50% N by FM, 25% N by Urea + 75% N by FM, 0% N by Urea + 100% N by FM arranged in a triplicate randomized complete block design having recommended N rate of 150 kg ha–1. The results revealed that the treatment having 75% Urea and 25% FM followed by 50% Urea and 50% FM showed better results in term of wheat growth and yield. There was 98% increase in N uptake of wheat grains and 200% increase in NUE by the application of 75% urea+25% FM relative to sole application of urea. This study suggests use of 3:1 ratio of urea and FM for maximum NUE and sustainable wheat production.


2004 ◽  
Vol 84 (2) ◽  
pp. 169-176 ◽  
Author(s):  
B. L. Ma ◽  
M. Li ◽  
L. M. Dwyer ◽  
G. Stewart

Little information is available comparing agronomic performance and nitrogen use efficiency (NUE) for N application methods such as foliar spray, soil application, and ear injection in maize (Zea mays L.). The objective of this study was to investigate the effects of various N application methods on total stover dry matter, grain yield, and NUE of maize hybrids using a 15N-labeling approach. A field experiment was conducted on a Dalhousie clay loam in Ottawa and a Guelph loam in Guelph for 2 yr (1999 and 2000). Three N application methods were tested on two maize hybrids, Pioneer 3893 and Pioneer 38P06 Bt. At planting, 60 kg N ha-1 as ammonium nitrate was applied to all treatments. In addition, 6.5 kg N ha-1 and 13.5 kg N ha-1 as 15N-labeled urea were applied to either foliage (Treatment I) or soil (Treatment II) at V6 and V12 stages, respectively. In Treatment III, 20 kg N ha-1 as 15N-labeled urea was injected into space between ear and husks at silking. The results showed that compared with soil N application neither foliar spray nor injection through ear affected grain yield or stover dry matter. The NUE values ranged from 12 to 76% for N fertilizer applied at V6 a nd V12 stages, or at silking for all treatments. There was no interaction of hybrid × N application methods on any variables measured with the only exception that for soil N application, grain NUE in Pioneer 38P06 Bt was significant higher than in Pioneer 3893. The difference in total N and NUE of grain and stover between soil N application and foliar N spray was inconsistent. However, NUE was substantially higher for N injection through the ear than for foliar or soil application without differential responses between the two hybrids. Nitrogen injection through the ear at silking might have altered N redistribution within the plant and improved NUE. Hence, it can potentially enhance grain protein content. Foliar N spray is not advocated for maize production in Ontario. Key words: Maize, Zea mays, nitrogen application methods, nitrogen-15, yield, nitrogen use efficiency


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1081 ◽  
Author(s):  
Oladapo Adeyemi ◽  
Reza Keshavarz-Afshar ◽  
Emad Jahanzad ◽  
Martin Leonardo Battaglia ◽  
Yuan Luo ◽  
...  

Corn (Zea mays L.) grain is a major commodity crop in Illinois and its production largely relies on timely application of nitrogen (N) fertilizers. Currently, growers in Illinois and other neighboring states in the U.S. Midwest use the maximum return to N (MRTN) decision support system to predict corn N requirements. However, the current tool does not factor in implications of integrating cover crops into the rotation, which has recently gained attention among growers due to several ecosystem services associated with cover cropping. A two-year field trail was conducted at the Agronomy Research Center in Carbondale, IL in 2018 and 2019 to evaluate whether split N application affects nitrogen use efficiency (NUE) of corn with and without a wheat (Triticum aestivum L.) cover crop. A randomized complete block design with split plot arrangements and four replicates was used. Main plots were cover crop treatments (no cover crop (control) compared to a wheat cover crop) and subplots were N timing applications to the corn: (1) 168 kg N ha−1 at planting; (2) 56 kg N ha−1 at planting + 112 kg N ha−1 at sidedress; (3) 112 kg N ha−1 at planting + 56 kg N ha−1 at sidedress; and (4) 168 kg N ha−1 at sidedress along with a zero-N control as check plot. Corn yield was higher in 2018 than 2019 reflecting more timely precipitation in that year. In 2018, grain yield declined by 12.6% following the wheat cover crop compared to no cover crop control, indicating a yield penalty when corn was preceded with a wheat cover crop. In 2018, a year with timely and sufficient rainfall, there were no yield differences among N treatments and N balances were near zero. In 2019, delaying the N application improved NUE and corn grain yield due to excessive rainfall early in the season reflecting on N losses which was confirmed by lower N balances in sidedressed treatments. Overall, our findings suggest including N credit for cereals in MRTN prediction model could help with improved N management in the Midwestern United States.


Sign in / Sign up

Export Citation Format

Share Document